
SNewton: safeguarded Newton methods for function
minimization

John C. Nash
2017-04-10

Safeguarded Newton algorithms

So-called Newton methods are among the most commonly mentioned in the solution of nonlinear equations
or function minimization. However, as discussed in https://en.wikipedia.org/wiki/Newton%27s_method#
History, the Newton or Newton-Raphson method as we know it today was not what either of its supposed
originators knew.

This vignette discusses the development of some safeguarded variants of Newton methods for function
minimization in R. Note that there are some resources in R for solving nonlinear equations by Newton-like
methods in the packages nleqslv and pracma.

The basic approach

If we have a function f(x), with gradient g(x) and second derivative (Hessian) H(x) the first order condition
for an extremum (min or max) is

g(x) = 0

To ensure a minimum, we want

$ H(x) > 0 $

The first order condition leads to a root-finding problem.

It turns out that x need not be a scalar. We can consider it to be a vector of parameters to be determined.
This renders g(x) a vector also, and H(x) a matrix. The conditions of optimality then require a zero gradient
and positive-definite Hessian.

The Newton approach to such equations is to provide a guess to the root xtry and to then solve the equation

$ H(x_t) * s = - g(x_t)$

for the search vector s. We update xt to xt + s and repeat until we have a very small gradient g(xt). If H(x)
is positive definite, we have a reasonable approximation to a (local) minimum.

Motivations

A particular interest in Newton-like methods its theoretical quadratic convergence. See https://en.wikipedia.
org/wiki/Newton%27s_method. That is, the method will converge in one step for a quadratic function f(x),
and for “reasonable” functions will converge very rapidly. There are, however, a number of conditions, and
practical programs need to include safequards against mis-steps in the iterations.

The principal issues concern the possiblity that H(x) may not be positive definite, at least in some parts of
the domain, and that the curvature may be such that a unit step xt + s does not reduce the function f . We
therefore get a number of possible variants of the method when different possible safeguards are applied.

1

https://en.wikipedia.org/wiki/Newton%27s_method#History
https://en.wikipedia.org/wiki/Newton%27s_method#History
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Newton%27s_method


Algorithm possibilities

There are many choices we can make in building a practical code to implement the ideas above. In tandem
with the two main issues expressed above, we will consider

• the modification of the solution of the main equation $ H(x_t) * s = - g(x_t)$ so that a reasonable
search vector s is always generated

• the selection of a new set of parameters xnew = xt + step ∗ s so that the function value f(xnew) is less
than f(xt).

The second choice above could be made slightly more stringent so that the Armijo (??ref) condition
of sufficient-decrease is met. Adding a curvature requirement gives the Wolfe condisions. See https:
//en.wikipedia.org/wiki/Wolfe_conditions. The Armijo requirement is generally written

f(xt + step ∗ s) < f(xt) + c ∗ step ∗ g(xt)T ∗ s

where c is some number less than 1. Typically $ c = 1e-4 = 0.0001 $. Note that the product of gradient
times search vector is negative for any reasonable situation, since we are trying to go “downhill”.

Some choices to compute the search vector

The primary concern in solving for s is that the Hessian may not be positive definite. This means that we
cannot apply fast and stable methods like the Cholesky decomposition to the matrix. At the time of writing,
we consider the following approaches:

• Attempt to solve $ H(x_t) * s = - g(x_t)$ with R directly, and rely on internal checks to catch any
cases where the solution fails. We can use try() to stop the program in this case.

• Use a Levenberg-Marquardt (??ref) stabilization to ensure that we have an augmented Hessian that is
positive definite. Essentially, we create Haug = H + λ ∗ I where I is the unit matrix of the size of H

• Use the singular value decomposition and drop any singular planes where the singular values fall below
some threshhold. Note that deciding the threshhold is possibly a non-trivial matter.

Note that within the above general choices for solution, we could try to specify how the solution is obtained,
since there are various ways to solve linear equations and to find the singular value decomposition. (??refs,
discussion??)

Choosing the step size

2

https://en.wikipedia.org/wiki/Wolfe_conditions
https://en.wikipedia.org/wiki/Wolfe_conditions

	Safeguarded Newton algorithms
	The basic approach
	Motivations
	Algorithm possibilities
	Some choices to compute the search vector
	Choosing the step size

