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This appendix indicates how to manipulate spatial weighting matri-
ces in R. It illustrates the approach developped in: Dray S., Legendre
P. and Peres-Neto P. R. (accepted) Spatial modeling: a comprehen-
sive framework for principal coordinate analysis of neighbor matrices
(PCNM). Ecological Modelling. Commands are written in red and
outputs are written in blue.
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1 Introduction

R is a statistical language which can be freely downloaded from internet (http:
//www.r-project.org/). The package spdep written by Roger Bivand is de-
voted to the creation and to the manipulation of spatial weighting matrices.
You have to install it and to load it into your R session:

library(spdep)

Package 'spam' is loaded. Version0.13-3 (2008-04-21).

Type demo( spam) for some demos,
help( Spam) for an overview of this package.
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2 Spatial Neighborhood

Spatial neighborhoods are managed in spded as objects of class nb. It corre-
sponds to the notion of connectivity matrices discussed in the article. Various
functions are devoted to create nb objects from geographic coordinates of sites.
We present different alternatives according to the sampling plan.

2.1 Grids

If the sampling scheme is based on grid of 10 rows and 8 columns, you can easily
generate the coordinates:

xygrid <- expand.grid(1:10, 1:8)
plot(xygrid)
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Spatial neighborhoods are managed in spded as objects of class nb. For a
grid, you can create this kind of object with the function cell2nb.

nb1 <- cell2nb(10, 8, type = "queen")
plot(nb1, xygrid, col = "green", pch = 20, cex = 2)
title(main = "queen neighborhood", cex.main = 2)
nb1

Neighbour list object:
Number of regions: 80
Number of nonzero links: 536
Percentage nonzero weights: 8.375
Average number of links: 6.7
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nb2 <- cell2nb(10, 8, type = "rook")
plot(nb2, xygrid, col = "blue", pch = 20, cex = 2)
title(main = "rook neighborhood", cex.main = 2)
nb2

Neighbour list object:
Number of regions: 80
Number of nonzero links: 284
Percentage nonzero weights: 4.438
Average number of links: 3.55
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2.2 Transects

The easiest way to deal with transects is to consider them as grids with only
one row:
xytransect <- expand.grid(1:20, 1)
nb3 = cell2nb(20, 1)
plot(nb3, xytransect, col = "red", pch = 20, cex = 2)
title(main = "transect of 20 sites")
summary(nb3)

Neighbour list object:
Number of regions: 20
Number of nonzero links: 38
Percentage nonzero weights: 9.5
Average number of links: 1.9
Link number distribution:

1 2
2 18
2 least connected regions:
1:1 20:1 with 1 link
18 most connected regions:
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 with 2 links
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transect of 20 sites

All sites have two neighbors except the first and the last one.

2.3 Irregular samplings

here are many ways to define neighborhood in the case of irregular samplings.
We consider a sampling with 10 sites:

set.seed(3)
xyir <- matrix(runif(20), 10, 2)
plot(xyir, pch = 20, cex = 1.5, main = "irregular sampling with 10 sites")
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nbnear1 <- dnearneigh(xyir, 0, 0.2)
nbnear2 <- dnearneigh(xyir, 0, 0.3)
nbnear3 <- dnearneigh(xyir, 0, 0.5)
nbnear4 <- dnearneigh(xyir, 0, 1.5)
par(mfrow = c(2, 2))
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plot(nbnear1, xyir, col = "red", pch = 20, cex = 2)
title(main = "neighbors if 0<d<0.2")
plot(nbnear2, xyir, col = "red", pch = 20, cex = 2)
title(main = "neighbors if 0<d<0.3")
plot(nbnear3, xyir, col = "red", pch = 20, cex = 2)
title(main = "neighbors if 0<d<0.5")
plot(nbnear4, xyir, col = "red", pch = 20, cex = 2)
title(main = "neighbors if 0<d<1.5")
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nbnear1

Neighbour list object:
Number of regions: 10
Number of nonzero links: 14
Percentage nonzero weights: 14
Average number of links: 1.4
3 regions with no links:
2 7 10

nbnear2

Neighbour list object:
Number of regions: 10
Number of nonzero links: 20
Percentage nonzero weights: 20
Average number of links: 2
1 region with no links:
7

Note that some points have no neighbors.
nbnear3
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Neighbour list object:
Number of regions: 10
Number of nonzero links: 58
Percentage nonzero weights: 58
Average number of links: 5.8

nbnear4

Neighbour list object:
Number of regions: 10
Number of nonzero links: 90
Percentage nonzero weights: 90
Average number of links: 9

In the last case, all points are connected to the 9 others.
It is also possible to possible to define neighborhood by a criteria based on

nearest neighbors. However, note that this option can lead to non-symmetric
neighborhood: if site A is the nearest neighbor of site B, it does not mean that
site B is the nearest neighbor of site A.

The function knearneigh creates an object of class knn. It can be transform
into a nb object with the function knn2nb. Note that this function has a argu-
ment sym which can be set to TRUE if we want to force the output neighborhood
to symmetry.

knn1 <- knearneigh(xyir, k = 1)
nbknn1 <- knn2nb(knn1, sym = T)
plot(nbknn1, xyir, col = "red", pch = 20, cex = 2)
title(main = "nearest neighbors (k=1)", cex.main = 2)

knn2 <- knearneigh(xyir, k = 2)
nbknn2 <- knn2nb(knn2, sym = T)
plot(nbknn2, xyir, col = "red", pch = 20, cex = 2)
title(main = "nearest neighbors (k=2)", cex.main = 2)
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This definition of neighborhood can lead to unconnected subgraphs. The
function n.comp.nb finds the number of disjoint connected subgraphs:

n.comp.nb(nbknn1)

$nc
[1] 3

$comp.id
[1] 1 2 1 1 3 3 1 1 3 2
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n.comp.nb(nbknn2)

$nc
[1] 1

$comp.id
[1] 1 1 1 1 1 1 1 1 1 1

More elaborate procedures are available to define neighborhood. For in-
stance, Delaunay triangulation is obtained with the function tri2nb. It requires
the package tripack. Other procedures are available (Gabriel graph, relative
neighborhood...):

nbtri <- tri2nb(xyir)
nbgab <- graph2nb(gabrielneigh(xyir), sym = TRUE)
nbrel <- graph2nb(relativeneigh(xyir), sym = TRUE)
nbsoi <- graph2nb(soi.graph(nbtri, xyir), sym = TRUE)
par(mfrow = c(2, 2))
plot(nbtri, xyir, col = "red", pch = 20, cex = 2)
title(main = "Delaunay triangulation")
plot(nbgab, xyir, col = "red", pch = 20, cex = 2)
title(main = "Gabriel Graph")
plot(nbrel, xyir, col = "red", pch = 20, cex = 2)
title(main = "Relative Neighbor Graph")
plot(nbsoi, xyir, col = "red", pch = 20, cex = 2)
title(main = " Sphere of Influence Graph")
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What are the differences between two neighborhoods ?

diffnb(nbsoi, nbrel)
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Neighbour difference for region id: 1 in relation to id: 3 8
Neighbour difference for region id: 2 in relation to id: 6
Neighbour difference for region id: 3 in relation to id: 1 8 10
Neighbour difference for region id: 6 in relation to id: 2 8 9
Neighbour difference for region id: 7 in relation to id: 10
Neighbour difference for region id: 8 in relation to id: 1 3 6
Neighbour difference for region id: 9 in relation to id: 6
Neighbour difference for region id: 10 in relation to id: 3 7
Neighbour list object:
Number of regions: 10
Number of nonzero links: 16
Percentage nonzero weights: 16
Average number of links: 1.6
2 regions with no links:
4 5

Usually, it can be useful to remove some connections due to edge effects.
If you want to modify the neighborhood, the function edit.nb provides an
interactive tool to add or delete connections. Lastly, we mention the function
include.self to include the site itself in its own list of neighbors:

str(nbsoi)

List of 10
$ : int [1:4] 3 4 7 8
$ : int 10
$ : int [1:3] 1 4 8
$ : int [1:3] 1 3 8
$ : int [1:2] 6 9
$ : int [1:2] 5 9
$ : int [1:2] 1 10
$ : int [1:3] 1 3 4
$ : int [1:2] 5 6
$ : int [1:2] 2 7
- attr(*, "region.id")= chr [1:10] "1" "2" "3" "4" ...
- attr(*, "call")= language soi.graph(tri.nb = nbtri, coords = xyir)
- attr(*, "class")= chr "nb"
- attr(*, "sym")= logi TRUE

str(include.self(nbsoi))

List of 10
$ : int [1:5] 1 3 4 7 8
$ : int [1:2] 2 10
$ : int [1:4] 1 3 4 8
$ : int [1:4] 1 3 4 8
$ : int [1:3] 5 6 9
$ : int [1:3] 5 6 9
$ : int [1:3] 1 7 10
$ : int [1:4] 1 3 4 8
$ : int [1:3] 5 6 9
$ : int [1:3] 2 7 10
- attr(*, "region.id")= chr [1:10] "1" "2" "3" "4" ...
- attr(*, "call")= language soi.graph(tri.nb = nbtri, coords = xyir)
- attr(*, "class")= chr "nb"
- attr(*, "sym")= logi TRUE
- attr(*, "self.included")= logi TRUE

See also these functions for the manipulation of nb objects:

intersect.nb(nb.obj1,nb.obj2)
union.nb(nb.obj1,nb.obj2)
setdiff.nb(nb.obj1,nb.obj2)
complement.nb(nb.obj)

droplinks(nb, drop, sym=TRUE)

nblag(neighbours, maxlag)
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2.4 Surface data

If the sampling sites are polygons (and not points), you can use the function
poly2nb. Note also that GIS data can be import into R using the package
shapefiles. Then, utilities for transform/manipulate these data are available
in the package maptools.

library(maptools)
data(columbus)
xx <- poly2nb(polys)
plot(polys, border = "grey")
plot(xx, coords, add = TRUE, pch = 20, cex = 2, col = "red")
title(main = "Neighborhood for polygons")
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3 Spatial weighting matrices

Spatial weighting matrices are not stored as matrices but as objects of the class
listw. This format is more efficient than a matrix representation to manage
large data sets. You can easily create an object of class listw from an object of
class nb with the function nb2listw. Different objects listw can be obtained
from a nb object. The argument style allow to define a transformation of the
matrix such as standardization by row sum, by total sum or binary coding...
General spatial weights can be introduced by the argument glist. This allows
to introduce, for instance, a weighting relative to the distances between the
points. For this task, the function nbdists could be very useful as it computes
Euclidean distance between neighbor sites defined by an nb object.

A nb object is a list of neighbors. The neighbors of the first site:
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nbgab[[1]]

[1] 4 7

We can compute Euclidean distance between sites and select distances for neigh-
bors:
round(dist(xyir), 3)

1 2 3 4 5 6 7 8 9
2 0.640
3 0.218 0.424
4 0.166 0.483 0.062
5 0.561 0.417 0.398 0.414
6 0.540 0.383 0.368 0.388 0.038
7 0.403 0.788 0.496 0.490 0.895 0.864
8 0.230 0.550 0.192 0.150 0.349 0.334 0.616
9 0.562 0.455 0.411 0.422 0.038 0.073 0.907 0.343
10 0.518 0.286 0.354 0.411 0.589 0.551 0.534 0.541 0.620

It is done automatically by the function nbdists:

distgab <- nbdists(nbgab, xyir)
str(distgab)

List of 10
$ : num [1:2] 0.166 0.403
$ : num [1:3] 0.424 0.383 0.286
$ : num [1:4] 0.4236 0.0617 0.3682 0.3538
$ : num [1:3] 0.1660 0.0617 0.1501
$ : num [1:2] 0.0383 0.0384
$ : num [1:4] 0.3830 0.3682 0.0383 0.3344
$ : num [1:2] 0.403 0.534
$ : num [1:2] 0.150 0.334
$ : num 0.0384
$ : num [1:3] 0.286 0.354 0.534
- attr(*, "class")= chr "nbdist"
- attr(*, "call")= language nbdists(nb = nbgab, coords = xyir)

Then, we can define weights as a function of distance (e.g. 1− dij/max(dij)):

fdist <- lapply(distgab, function(x) 1 - x/max(dist(xyir)))

And the spatial weighting matrix can be created:

listwgab <- nb2listw(nbgab, glist = fdist, style = "B")
listwgab

Characteristics of weights list object:
Neighbour list object:
Number of regions: 10
Number of nonzero links: 26
Percentage nonzero weights: 26
Average number of links: 2.6

Weights style: B
Weights constants summary:

n nn S0 S1 S2
B 10 100 18.20 27.02 148.5

names(listwgab)

[1] "style" "neighbours" "weights"

listwgab$neighbours[[1]]
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[1] 4 7

listwgab$weights[[1]]

[1] 0.8171 0.5559

You can obtain the matrix representation of a listw object:

print(listw2mat(listwgab), digits = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
1 0.000 0.000 0.000 0.817 0.000 0.000 0.556 0.000 0.000 0.000
2 0.000 0.000 0.533 0.000 0.000 0.578 0.000 0.000 0.000 0.685
3 0.000 0.533 0.000 0.932 0.000 0.594 0.000 0.000 0.000 0.610
4 0.817 0.000 0.932 0.000 0.000 0.000 0.000 0.835 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.958 0.000 0.000 0.958 0.000
6 0.000 0.578 0.594 0.000 0.958 0.000 0.000 0.631 0.000 0.000
7 0.556 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.412
8 0.000 0.000 0.000 0.835 0.000 0.631 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.958 0.000 0.000 0.000 0.000 0.000
10 0.000 0.685 0.610 0.000 0.000 0.000 0.412 0.000 0.000 0.000

4 Moran’s eigenvector maps (MEM)

Moran’s eigenvectors of a spatial weighting matrix are computed by the function
scores.listw of the spacemakeR package. The function returns a list with
eigenvalues and eigenvectors:

library(spacemakeR)

spacemakeR

Dray S., Legendre P. and Peres-Neto P. R. (2006)
Spatial modeling: a comprehensive framework for principal
coordinate analysis of neighbor matrices (PCNM). Ecological Modelling, 3-4: 483-493

Read the tutorial available (vignette in /inst/doc directory) using vignette("tutorial",package="spacemakeR").

eigengab = scores.listw(listwgab, echo = TRUE)

vector number 5 corresponding to null eigenvalue is removed

barplot(eigengab$values, main = "Eigenvalues of spatial weighting matrix")
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Eigenvectors can be represented in the geographical space:

par(mfrow = c(3, 3))
for (i in 1:dim(eigengab$vectors)[2]) s.value(xyir, eigengab$vectors[,

i], addaxes = F, sub = paste("Eigenvector", i, "(",
round(eigengab$values[i], 3), ")"), cleg = 0, csub = 2,
neig = neig(list = nbgab))
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 d = 0.2  Eigenvector 1 ( 1.277 )  d = 0.2  Eigenvector 2 ( 0.951 )  d = 0.2  Eigenvector 3 ( 0.749 ) 

 d = 0.2  Eigenvector 4 ( 0.05 )  d = 0.2  Eigenvector 5 ( −0.249 )  d = 0.2  Eigenvector 6 ( −0.523 ) 

 d = 0.2  Eigenvector 7 ( −0.907 )  d = 0.2  Eigenvector 8 ( −1.328 )  d = 0.2  Eigenvector 9 ( −1.839 ) 

Moran’s I can be computed and tested for each eigenvector with the test.scores
function:
moranI <- test.scores(eigengab, listwgab, 99)
moranI

stat pval
1 0.70159 0.01
2 0.52255 0.01
3 0.41162 0.01
4 0.02725 0.28
5 -0.13668 0.56
6 -0.28734 0.28
7 -0.49867 0.07
8 -0.72968 0.01
9 -1.01065 0.01

plot(eigengab$values, moranI$stat, ylab = "Moran's I",
xlab = "Eigenvalues", pch = 20, cex = 2)

text(eigengab$values, moranI$stat, row.names(moranI),
pos = 4)

text(-1, 0.5, paste("correlation =", cor(moranI$stat,
eigengab$values)))

abline(a = 0, b = nrow(xyir)/sum(listw2mat(listwgab)),
lty = 3)
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Eigenvalues and Moran’s I are equal (post-multiply by a constant). Spatial
representation of significant eigenvectors:

signi = which(moranI$p < 0.05)
signi

[1] 1 2 3 8 9

par(mfrow = n2mfrow(length(signi)))
for (i in signi) s.value(xyir, eigengab$vectors[, i],

addaxes = F, sub = paste("ev", i), csub = 2, neig = neig(list = nbgab))

14



 d = 0.2  ev 1 

 −0.5  −0.3  −0.1  0.1  0.3  0.5

 d = 0.2  ev 2 

 −0.5  −0.3  −0.1  0.1  0.3

 d = 0.2  ev 3 

 −0.5  −0.3  −0.1  0.1  0.3  0.5

 d = 0.2  ev 8 

 −0.5  −0.3  −0.1  0.1  0.3

 d = 0.2  ev 9 

 −0.5  −0.3  −0.1  0.1  0.3  0.5

5 Selection of a spatial weighting matrix

The data-driven procedure of selection is based on AICc. The function or-
tho.AIC orders variables and returns AICc for all models of one, two, ..., p
variables. We illustrate its use with the oribatid data-set which is available in
the ade4 package. Data are Hellinger-transformed and then the linear trend is
removed:
data(oribatid)
fau <- sqrt(oribatid$fau/outer(apply(oribatid$fau, 1,

sum), rep(1, ncol(oribatid$fau)), "*"))
faudt <- resid(lm(as.matrix(fau) ~ as.matrix(oribatid$xy)))

For instance, we consider the binary spatial weighting matrix based on the
Delaunay triangulation.

nbtri <- tri2nb(as.matrix(oribatid$xy))
sc.tri <- scores.listw(nb2listw(nbtri, style = "B"))
AIC.tri <- ortho.AIC(faudt, sc.tri$vec)
AIC.tri

[1] -90.923 -92.465 -93.783 -94.725 -95.195 -94.967 -94.672
[8] -94.306 -93.865 -93.367 -92.620 -91.835 -90.893 -89.893
[15] -88.797 -87.560 -86.230 -84.784 -83.072 -81.126 -79.055
[22] -76.853 -74.516 -71.964 -69.248 -66.229 -62.934 -59.436
[29] -55.708 -51.684 -47.391 -42.795 -37.815 -32.406 -26.587
[36] -20.286 -13.458 -6.040 2.054 10.816 20.387 30.845
[43] 42.285 54.854 68.671 83.904 100.829 119.706 140.751
[50] 164.349 191.022 221.413 256.372 296.682 343.654 399.072
[57] 465.254 545.311 644.133 769.552 932.074 1150.598 1459.199
[64] 1925.954 2712.519 4298.879 9097.134 NA NA

The minimum value and the rank of the corresponding are obtained easily:
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min(AIC.tri, na.rm = TRUE)

[1] -95.2

which.min(AIC.tri)

[1] 5

Note that the order of the variables can also be obtained from the function
ortho.AIC by setting the ord.var argument to TRUE. In this case, the returned
object is a list of two vectors:

AIC.tri <- ortho.AIC(faudt, sc.tri$vec, ord.var = TRUE)
AIC.tri$AICc[1:10]

[1] -90.92 -92.47 -93.78 -94.73 -95.20 -94.97 -94.67 -94.31 -93.86
[10] -93.37

AIC.tri$ord[1:10]

[1] 3 2 7 1 16 4 10 6 13 57

The user-friendly function test.W simplifies the procedure of selection of a spa-
tial weighting matrix. It takes at least two arguments: a response matrix and
an object of the class nb. If only two arguments are considered, the function
prints the results for the best model. All the results are stored in the element
best of the list. It contains eigenvectors and eigenvalues of the spatial weighting
matrix considered and the results of the AIC -based procedure.

tri.res <- test.W(faudt, nbtri)

Best model:

AICc NbVar
1 -95.2 5

names(tri.res)

[1] "all" "best"

names(tri.res$best)

[1] "values" "vectors" "call" "AICc" "AICc0" "ord"
[7] "R2"

The function can also be used to estimate the best values of parameters if
we consider a function of the distance. This can be illustrated with the function
f2 = 1− (xα)/dmaxα with the connectivity defined by Delaunay triangulation.
We considered the sequence of integers between 2 and 10 for α.

f2 <- function(x, dmax, y) {
1 - (x^y)/(dmax)^y

}
maxi <- max(unlist(nbdists(nbtri, as.matrix(oribatid$xy))))
tri.f2 <- test.W(faudt, nbtri, f = f2, y = 2:10, dmax = maxi,

xy = as.matrix(oribatid$xy))
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Best model:

y dmax AICc NbVar
9 10 3 -96.22 6

In this case, the element best contains the results for the best values of the
parameter α (i.e. α=10).

names(tri.f2$best)

[1] "values" "vectors" "call" "AICc" "AICc0" "ord"
[7] "R2"

Lastly, the function test.W can be used to evaluate different definitions of neigh-
borhood. We illustrate this possibility by the definition of a sequence of neigh-
borhood by distance criteria. Firstly, we choose the range of values to be tested
with an empirical multivariate variogram using the function variogmultiv. The
function has been applied to oribatid mites data:

mvspec <- variogmultiv(faudt, oribatid$xy, nclass = 20)
mvspec

$d
[1] 0.2405 0.7214 1.2023 1.6833 2.1642 2.6452 3.1261 3.6070 4.0880
[10] 4.5689 5.0498 5.5308 6.0117 6.4926 6.9736 7.4545 7.9355 8.4164
[19] 8.8973 9.3783

$var
[1] 0.2049 0.2326 0.2417 0.2545 0.2829 0.3205 0.3203 0.3361 0.3289
[10] 0.2791 0.2964 0.2709 0.2479 0.2624 0.2371 0.2541 0.2893 0.3343
[19] 0.3752 0.4709

$n.c
[1] 61 67 70 69 70 70 70 70 70 70 70 66 60 47 43 37 26 18 13 9

$n.w
[1] 63 135 245 223 272 235 180 189 138 113 134 102 117 65 71 49
[17] 35 25 13 11

$dclass
[1] "(0,0.481]" "(0.481,0.962]" "(0.962,1.44]" "(1.44,1.92]"
[5] "(1.92,2.4]" "(2.4,2.89]" "(2.89,3.37]" "(3.37,3.85]"
[9] "(3.85,4.33]" "(4.33,4.81]" "(4.81,5.29]" "(5.29,5.77]"
[13] "(5.77,6.25]" "(6.25,6.73]" "(6.73,7.21]" "(7.21,7.69]"
[17] "(7.69,8.18]" "(8.18,8.66]" "(8.66,9.14]" "(9.14,9.62]"

plot(mvspec$d, mvspec$var, ty = "b", pch = 20, xlab = "Distance",
ylab = "C(distance)")
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We will construct ten neighborhood matrices with a distance criterion varying
along the sequence of 10 evenly distributed values between 1.012 and 4 m:

dxy <- seq(give.thresh(dist(oribatid$xy)), 4, le = 10)
nbdnnlist <- lapply(dxy, dnearneigh, x = as.matrix(oribatid$xy),

d1 = 0)

Then, the function test.W can be applied to this list of neighborhood matrices:

dnn.bin <- lapply(nbdnnlist, test.W, Y = faudt)

Best model:

AICc NbVar
1 -96.65 8

Best model:

AICc NbVar
1 -97.14 5

Best model:

AICc NbVar
1 -99.42 7

Best model:

AICc NbVar
1 -100.6 5
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Best model:

AICc NbVar
1 -99.28 4

Best model:

AICc NbVar
1 -97.8 5

Best model:

AICc NbVar
1 -95.23 4

Best model:

AICc NbVar
1 -96.88 6

Best model:

AICc NbVar
1 -94.32 6

Best model:

AICc NbVar
1 -96.72 6

The object dnn.bin is a list with the results of test.W for each neighborhood
matrix:
length(dnn.bin)

[1] 10

For each neighborhood matrix, we can find the lowest AICc:

minAIC <- sapply(dnn.bin, function(x) min(x$best$AICc,
na.rm = T))

And select the best spatial weighting matrix corresponding to a distance of 2.007
m:
which.min(minAIC)

[1] 4

dxy[which.min(minAIC)]

[1] 2.007

A similar approach can be used with a spatial weighting function:

f2 <- function(x, dmax, y) {
1 - (x^y)/(dmax)^y

}
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It is a little bit more complicate if some parameters (here dmax) vary with the
neighborhood matrix:

dnn.f2 <- lapply(nbdnnlist, function(x) test.W(x, Y = faudt,
f = f2, y = 2:10, dmax = max(unlist(nbdists(x, as.matrix(oribatid$xy)))),
xy = as.matrix(oribatid$xy)))

Best model:

y dmax AICc NbVar
1 2 1.011 -101.1 8

Best model:

y dmax AICc NbVar
3 4 1.342 -98.58 5

Best model:

y dmax AICc NbVar
4 5 1.662 -99.31 9

Best model:

y dmax AICc NbVar
9 10 2.006 -100.4 7

Best model:

y dmax AICc NbVar
1 2 2.332 -102.6 9

Best model:

y dmax AICc NbVar
2 3 2.668 -102.7 7

Best model:

y dmax AICc NbVar
1 2 3 -102.5 5

Best model:

y dmax AICc NbVar
1 2 3.329 -100.8 6

Best model:

y dmax AICc NbVar
1 2 3.658 -99.3 3

Best model:

y dmax AICc NbVar
1 2 4 -98.6 4

minAIC <- sapply(dnn.f2, function(x) min(x$best$AICc,
na.rm = T))

min(minAIC)
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[1] -102.7

which.min(minAIC)

[1] 6

dnn.f2[[which.min(minAIC)]]$all

y dmax AICc NbVar
1 2 2.668 -102.4 7
2 3 2.668 -102.7 7
3 4 2.668 -101.0 5
4 5 2.668 -100.6 5
5 6 2.668 -101.4 6
6 7 2.668 -100.8 5
7 8 2.668 -100.7 6
8 9 2.668 -100.5 5
9 10 2.668 -100.3 5

Lastly, Eigenvectors of the best spatial weighting matrix can be mapped.
They are represented by the order given by the selection procedure. The vector
3 explains the largest part of the oribatid community, then it is the second and
the eighth:
par(mfrow = c(1, 3))
s.value(oribatid$xy, dnn.f2[[7]]$best$vectors[, dnn.f2[[7]]$best$ord[1]],

cleg = 0, sub = paste("vector", dnn.f2[[7]]$best$ord[1]),
csub = 3)

s.value(oribatid$xy, dnn.f2[[7]]$best$vectors[, dnn.f2[[7]]$best$ord[2]],
cleg = 0, sub = paste("vector", dnn.f2[[7]]$best$ord[2]),
csub = 3)

s.value(oribatid$xy, dnn.f2[[7]]$best$vectors[, dnn.f2[[7]]$best$ord[3]],
cleg = 0, sub = paste("vector", dnn.f2[[7]]$best$ord[3]),
csub = 3)

 d = 0.5 

 vector 3 
 d = 0.5 

 vector 2 
 d = 0.5 

 vector 8 

21


