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Abstract

The spcopula R package provides tools to model spatial and spatio-temporal phenom-
ena with spatial and spatio-temporal vine copulas. Copulas allow us to flexibly build
multivariate distributions with mixed margins where the copula describes the multivari-
ate dependence structure coupling the margins. In classical geostatistics, a multivariate
Gaussian distribution is typically assumed and dependence is summarized in a covari-
ance matrix implying limitations like elliptical symmetry in the strength of dependence.
Copulas allow for dependence structures beyond the Gaussian one, being for instance
asymmetric. We developed the spatio-temporal vine copulas such that the bivariate cop-
ula families in the lower trees may change with distance across space and time allowing not
only for a varying strength of dependence but also for a changing dependence structure.
These spatio-temporal distributions are used to predict values at unobserved locations,
assess risk, or run simulations. Based on the concept of vine copulas, the spcopula pack-
age provides a large set of multivariate distributions. As bivariate spatial copulas do not
have any probabilistic restrictions, the spatial vine copula is a powerful approach for mod-
elling skewed or heavy tailed data with complex and potentially asymmetric dependence
structures in the spatial and spatio-temporal domain.

Keywords: spatial data, multivariate distributions, spatial modelling, interpolation.

1. Introduction

Interpolation of spatial random fields is a common task in geostatistics. Simple approaches
like inverse distance weighted predictions or the well known kriging procedures have routinely
been applied for many years. However, when the underlying assumptions (i.e., a multivariate
Gaussian distribution, possibly after transformation) of these approaches are hard to be ful-
filled, alternatives are needed. Copulas have been used in some applications in the domain
of spatial statistics. Bárdossy (2006) was one of the first to apply copulas in a geostatisti-
cal context. Some recent advances incorporating copulas in this field have for instance been
published by Kazianka and Pilz (2011, 2010), Bárdossy (2011), Bárdossy and Pegram (2009)
or Bárdossy and Li (2008). They use a comparatively small set of copula families to model
spatial processes.

The spatio-temporal domain rises in interest since several years, and several extensions of
the spatial approaches to spatio-temporal ones have been developed (see e.g., Cressie and
Wikle 2011). A major challenge with extending spatial kriging to spatio-temporal kriging is
to build and fit well defined spatio-temporal covariance functions. The approach presented
here differs from the classical geostatistical ones by using spatio-temporal vine copulas to build
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a spatio-temporal distribution that does not rely on the Gaussian assumption, nor involves
a covariance matrix. It extends the spatial vine copula (Gräler 2014) to the spatio-temporal
context. Similar to co-kriging, we will introduce a spatio-temporal vine copula approach
incorporating covariates.

The advantage of the spatio-temporal vine copula is its flexibility in the selection of copula
families through bivariate spatio-temporal copulas. Bivariate spatio-temporal copulas are a
convex combination of different copula families that are parameterised by spatial and temporal
distance (Equation 1 in Section 2). This changing dependence structure allows for instance to
preserve spatial symmetry within each time step while allowing for a directional effect across
time. The introduction of a bivariate spatial copula into a vine copula for interpolation has
been described by Gräler (2014). The bivariate spatial or spatio-temporal copulas are com-
bined into a vine copula (initially called pair-copula construction by Aas, Czado, Frigessi, and
Bakken 2009; Bedford and Cooke 2002) for a local spatial or spatio-temporal neighbourhood.
A first approach to extend the spatial to the spatio-temporal approach has been presented
in Gräler and Pebesma (2012). This paper describes a more flexible spatio-temporal neigh-
bourhood structure and the introduction of a covariate to improve the prediction. Adding
marginal distributions to the spatial or spatio-temporal vine copula yields a full multivariate
distribution describing a local distribution of the observed phenomenon.

The spcopula R package provides functions and classes to model spatial and spatio-temporal
phenomena by vine copulas. Different tools have been implemented to fit spatial and spatio-
temporal vine copulas to a data set, to interpolate the random field, and to predict quantiles
from it. The package extends the copula R package (Kojadinovic and Yan 2010; Yan 2007) and
provides additional copula families. Wrapper classes following the copula design to the cop-
ula families available in VineCopula (Schepsmeier, Stoeber, and Brechmann 2013) that have
been implemented in spcopula are now directly available in VineCopula. The functionality for
non-spatial vine copulas relies on VineCopula. For handling spatial and spatio-temporal data,
spcopula builds on the R packages sp (Pebesma and Bivand 2005) and spacetime (Pebesma
2012). A more detailed overview of core dependencies and contributions of spcopula is pro-
vided in Table 1.

The remainder of this paper is organized as follows. The theoretical background of copulas,
bivariate spatial copulas, bivariate spatio-temporal copulas and vine copulas are addressed in
the next section. A strategy to estimate spatio-temporal vine copulas is given in Section 3.
Section 4 discusses different applications of the multivariate distribution such as the possibil-
ity to predict values at unobserved locations or simulate from the spatial or spatio-temporal
random field. One application is illustrated in Section 5, where daily mean PM10 concentra-
tions (particulate matter less than 10 µm in diameter) across Europe observed throughout
the year 2005 are interpolated including an additional covariate. Results are discussed in
Section 6. Conclusions are drawn in Section 7.
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Package spcopula reuses and extends spcopula adds to the functionality
copula • S4-class definition copula

• methods fitCopula, dCopula,
pCopula, rCopula

• bivariate copula families asCopula,
cqsCopula and tawn3pCopula

• empirical and analytical tail dependence
functions empTailDepFun and tailDepFun

• partial derivatives via methods dduCopula

and ddvCopula

• inverse of partial derivatives via methods
invdduCopula and invddvCopula

• inverse of bivariate copulas for a given u or
v via methods qCopula_u and qCopula_v

VineCopula • function BiCopSelect

• S4-class wrapper vineCopula
-/-

sp • abstract S4-class definition
Spatial

• function spDists

• nearest spatial neighbour calculation via
function getNeighbours

spacetime • abstract S4-class definition ST • nearest spatio-temporal neighbour
calculation via function getStNeighbours

Table 1: Overview of core dependencies and contributions of spcopula.

2. Spatio-temporal vine copulas

In the following, we assume a spatio-temporal random field Z : Ω× S × T → R defined over
some spatial domain S and temporal domain T of interest and an underlying probability
space Ω. Typically, a sample Z =

(
z(s1, t1), . . . , z(sn, tn)

)
has been observed at a set of

distinct spatio-temporal locations (s1, t1), . . . , (sn, tn) ∈ S × T where in general some spatial
locations have been sampled at multiple time instances. Often, one is interested in modelling
Z from the sample Z in order to predict at unobserved locations in space and time or simulate
from the distribution. The spatio-temporal random field might as well be accompanied by a
co-variate Y leading to a bivariate spatio-temporal random field: (Z, Y ) : Ω× S × T → R2.

Copulas describe the dependence between the margins of multivariate distributions. Sklar
(1959) proved that any n-variate distribution H can be split into its margins F1, . . . , Fn and
the copula C which couples the margins with a given dependence structure: H(x1, . . . , xn) =
Cn

(
F1(x1), . . . , Fn(xn)

)
. A copula can be imagined as a multivariate cumulative density dis-

tribution with uniform margins where its density reflects the strength of dependence between
the margins. Many different parametric copula families exist allowing for very different depen-
dence structures including certain symmetry properties but as well asymmetric, directional
influences. In a bivariate symmetric case, the strength of dependence, i.e., the copula density
(denoted by c), of a pair (u, v) ∈ [0, 1]2 does not depend on the order, i.e., c(u, v) = c(v, u),
∀ (u, v) ∈ [0, 1]2 while this does not hold for an asymmetric copula. Thinking of u and v as
cumulative distribution values of two consecutive time steps, this allows to model a sudden
rise in value with a different strength of dependence than a sudden drop. For further details
we refer to the introductory book by Nelsen (2006).

Sklar’s Theorem is true for any dimension d ≥ 2, but we will at first only consider bivariate
copulas C : [0, 1]2 → [0, 1]. The density of a copula expresses the strength of dependence which
changes over the range of the marginal distributions. The only copula exhibiting a constant
strength of dependence across its margins is the product copula Π describing independence.
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Figure 1: Copula densities of the Gaussian and Gumbel copulas. Both copulas are shown
with standard normal distributed margins and a Kendall’s tau correlation of 0.5.

Commonly, strength of dependence in a bivariate setting is measured by the correlation (or
covariance) between two random variables and a Gaussian distribution is typically assumed
implicitly. As a Gaussian distribution can be decomposed into a Gaussian copula with Gaus-
sian margins, one imposes the Gaussian dependence structure which is elliptically symmetric
(following the notion of elliptical contours of the bivariate Gaussian distribution). Hence, by
only investigating the correlation of two variables, potential deviations of dependence from
the Gaussian elliptical model are neglected. Different copulas might reflect samples having
identical correlation, but different dependence structure (Figure 1). The same applies to the
spatial and spatio-temporal domain where kriging implicitly assumes a Gaussian dependence
structure. However, looking into different data sets and investigating pairwise scatter plots
reveals non-Gaussian dependence structures. Especially the correlation structure of pairs
spanning across time may exhibit an asymmetric (directional) dependence. Such structures
can be captured by copulas.

Copulas allow to model the dependence structure of a multivariate distribution disjoint from
the marginals. This introduces a huge flexibility and eases the estimation at the same time.
As the analytically known multivariate copula families are rather limited in their flexibility,
we use vine copulas that allow to flexibly build multivariate copulas by any combination of
bivariate ones. For a successful model it is important to obtain good fits of both, margins
and copula. The fitting of the margins can be carried out with any approach available in the
literature. For the subsequent development of spatio-temporal vine copulas, we assume to
have marginal distributions Fq,r of Z and Gq,r of Y for any location (sq, tr) ∈ S × T .

We briefly introduce bivariate spatial copulas as in Gräler (2014) by incorporating distance
as the only parameter but utilizing the flexibility of many bivariate copula families. For
pairs of locations we assume that the separation distance of these is the driving parameter
determining the dependence. Hence, pairs of locations very close to each other are likely
to exhibit a dependence structure close to perfect dependence where noise might reduce the
strength of dependence to some degree (analogous to the nugget effect in kriging). For large
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distances, the pairs will tend to be independent and are modelled by the product copula Π.
The approaches by Bárdossy (2011) and Kazianka and Pilz (2010) allow only for a single
multivariate copula family. The bivariate spatial copula ch(u, v) recalled here is designed as
a convex combination of bivariate copulas (in terms of their densities) that is not limited to
a single family (Equation 1). Hence, we allow not only for a varying strength of dependence
but also for a dependence structure changing with distance:

ch(u, v) :=



c1,h(u, v) , 0 ≤ h < l1
(1− λ2)c1,h(u, v) + λ2c2,h(u, v) , l1 ≤ h < l2
...

...
(1− λk)ck−1,h(u, v) + λk · 1 , lk−1 ≤ h < lk
1 , lk ≤ h

(1)

where λj :=
h−lj−1

lj−lj−1
is a linearly interpolated weight, h denotes the separating distance and

l1, . . . , lk denote chosen distances of spatial bins (e.g., midpoint or mean distance of all point
pairs involved in the estimation). The parameters of the copulas ci,h in the convex combination
may as well depend on the distance h. With the help of the marginal CDF or a rank order
transformation, the arguments u and v are the values of the pairs of locations transformed to
[0, 1]. Inspecting Equation 1 reveals that different choices of bins will in general yield different
approximations to the underlying spatial dependence structure. This binning faces the same
balancing issue as a classical variogram estimation where many bins allow for a flexible model
but too few observations per bin and conversely few but well filled bins reduce the flexibility.
It is important to maintain enough pairs per bin to allow for a sensible copula family selection
throughout the estimation process.

The temporal extension of the bivariate spatial copula is yet another convex combination of
bivariate spatial copulas c∆

h at different time lags ∆. In the case where one does not want to
predict the spatio-temporal random field between time steps, the bivariate spatio-temporal
copula can be reduced to a piecewise defined copula where the temporal lag between both
spatio-temporal locations selects the bivariate spatial copula to be used.

Concentrating on a local neighbourhood of d spatio-temporal neighbours (Figure 2), we now
model the pair-wise dependence between locations through a bivariate spatio-temporal copula.
However, these copulas need to be joined to benefit from the full d-dimensional distribution of
the neighbourhood. A technique to combine bivariate copulas into multivariate copulas has
been introduced by Aas et al. (2009) building on work from Bedford and Cooke (2002). This
approach has first been introduced as the pair-copula construction and the resulting copulas
are now known as vine copulas in the literature.

Vine copulas approximate multivariate copulas through bivariate building blocks (Figure 3).
The joint density is obtained as the product of all bivariate copula densities involved. In the
special case of spatio-temporal vine copulas with an additional covariate Y : S × T → R, we
model the first tree by bivariate spatio-temporal copulas c∆

h and cZY , the copula describing
the dependence between Z and Y . The remaining upper trees are modeled by cj,j+i|0,...,j−1

fixed over space and time:
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Figure 2: A spatio-temporal neighbourhood including the three spatially closest neighbours
at three different time lags.

c∆h (u0, v0, u1, . . . , ud)

=cZY (u0, v0) ·
d∏

i=1

c∆
h(0,i)(u0, ui) ·

d∏
i=1

cY,i|0(uY |0, ui|0)

·
d−1∏
j=1

d−j∏
i=1

cj,j+i|Y,0,...,j−1(uj|Y,0,...,j−1, uj+i|Y,0,...,j−1) (2)

where v0 = G0

(
Y (s0, t0)

)
with G0 being the co-variate’s Y marginal cumulative distribution

function at (s0, t0), ui = Fi

(
Z(sq, tr)

)
for 0 ≤ i ≤ d with (sq, tr) denoting the i-th closest

neighbor of (s0, t0) with marginal cumulative distribution function Fi = Fq,r. For the spatio-
temporally fixed upper part of the vine it is

uY |0 = FY |0(v0|u0) =
∂CZ,Y (u0, v0)

∂u0

ui|0 = Fi|0(ui|u0) =
∂C∆

h(0,i)(u0, ui)

∂u0
(3)

(4)

uj+i|Y,0,...,j−1 = Fj+i|Y,0,...j−1(uj+i|v0, u0, . . . , uj−1)

=
∂Cj−1,j+i|Y,0,...j−2(uj−1|Y,0,...j−2, uj+i|Y,0,...j−2)

∂uj−1|Y,0,...j−2

for 1 ≤ j < d and 0 ≤ i ≤ d− j.
In general, different decompositions of a multivariate copula exist, refereed to as regular
vines, but in the spatial or spatio-temporal interpolation where a central element is naturally
identified, we use a canonical vine where all initial dependencies are with respect to the central
location. In the spatio-temporal tree (first tree in Figure 3) of the spatio-temporal vine, all
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Figure 3: Graphical representation of a 5-dimensional local spatio-temporal vine copula with
covariate Y , reoccurring location s1 at the current and one preceding time slice and location
s2 at the current time slice. The notation follows the one introduced in Equation 2.

edges connecting different spatio-temporal neighbours are modelled through a spatio-temporal
copula c∆

h(0,q) parametrized by the spatial distance h(0, q) and temporal lag ∆ = t0−tr between

the data locations (s0, t0) and (sq, tr). The edge connecting the central location with its co-
located covariate Y (s0, t0) is represented by the best fitting bivariate copula cZY . In general,
the dependency between the variable of interest and its covariate might as well change over
space and time. All consecutive upper trees are modelled through spatio-temporally constant
copulas. The upper vine structure does not impose any restriction on the bivariate copulas
involved and are kept fixed no matter how the neighbourhood might be organized. The
conditional distribution functions given in the above equations can immediately be obtained
as partial derivatives of the already modelled copulas.

To achieve a full distribution describing the local behaviour of the spatio-temporal random
field Z, margins need to be joined with the spatio-temporal vine copula. Depending on the
properties of the phenomenon to be modelled, one might use a single margin for all locations
(in case the random field can be assumed to be stationary) or several margins incorporating
some trend that is based for example on location, elevation or additional covariates. The den-
sity of the full distribution is obtained by multiplying the copula’s density with the marginal
densities and the variables are mapped to the copula scale through the marginal cumulative
distribution functions G0 for the co-variate Y at (s0, t0) and Fi = Fq,r of Z with (sq, tr) being
the i-th neighbour of (s0, t0):

f∆
h (z0, v0, z1, . . . , zd) = g0(y0) ·

d∏
i=0

fi(zi) · c∆h
(
F0(z0), G0(y0), F1(z1), . . . , Fd(zd)

)
(5)

where the zi are representations of the random field Z at (si, ti), the i-th neighbour of (s0, t0).
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3. Spatio-temporal vine copula estimation

We introduce an estimation procedure for the spatio-temporal vine copula that borrows ideas
from classical geostatistical approaches. To estimate the bivariate spatio-temporal copula, the
data is grouped into spatial bins for each temporal lag. Kendall’s tau correlation measure is
marginally independent and thus represents the correlation at the copula level. This makes it
very useful in the application of copulas and some one-parameter copula families even exhibit
a one-to-one relationship between Kendall’s tau and their parameter. The correlogram, using
Kendall’s tau, is calculated for the binned data. For each bin, several copula families are
fitted to the transformed data (using a rank-order transformation or the fitted cumulative
distribution functions of the margins) and the best fitting family (based on e.g., likelihood,
AIC or BIC) is selected. When one restricts the set of copula families to those exhibiting a
direct link between Kendall’s tau and their parameter, one might fit functions to the afore
obtained correlograms. These functions then relate separating distance through Kendall’s tau
to a parameter estimate for the copulas involved in the convex combination for each temporal
lag. This way, the bivariate spatio-temporal copula will exactly reproduce Kendall’s tau for
any distance as modelled through the function from the correlogram. In case several best
fitting families cannot be parametrized through Kendall’s tau, one representative fit for each
bin is obtained and combined as given in Equation 1. Using these static representations
in the convex combination of copulas produces Kendall’s tau values as a piecewise linear
interpolation of the values obtained in the correlogram.

For further processing, the data needs to be re-arranged in spatio-temporal neighbourhoods
of central locations and their spatio-temporally closest neighbours. Typically, the complex
dependence structure over space and time does not relate to an easily obtained Euclidean dis-
tance measure in S×T . To select the most correlated neighbours, a considerably larger spatio-
temporal block neighbourhood (Figure 2) as the target dimension of the spatio-temporal vine
copula is investigated and the d neighbours having the strongest correlation using the fitted
correlogram functions are selected. This introduces some additional flexibility compared to
the approach described by Gräler and Pebesma (2012) as the neighbourhood does not depend
on a fixed spatio-temporal block size and missing values may easily be replaced by the next
strongest correlated locations. These neighbourhoods generate a d + 1-dimensional dataset
with approximately uniform on [0, 1] distributed margins. The bivariate spatio-temporal cop-
ula c∆

h on the first tree can now be used to derive the conditional sample of dimension d
(conditioned to the value at the central location (s0, t0)). The spatio-temporally conditioned
data is combined with data conditioned on the covariate and used for the remainder of the
vine (Figure 3). The spatio-temporally fixed vine copula estimation proceeds sequentially by
using the best fitting copula per bivariate pair. Details on the upper vine estimation are pro-
vided in Aas et al. (2009), Czado, Schepsmeier, and Min (2012) and Dissmann, Brechmann,
Czado, and Kurowicka (2013).

The joint copula density c∆h can then be obtained through Equation 2 where the first sequence
of products reflects the spatio-temporal tree. The remaining spatio-temporally constant trees
appear in the second and third product sequences. Fitting the marginal distributions, fol-
lowing generally any approach available in the literature, yields a full distribution through
Equation 5 describing the local behaviour of the spatio-temporal random field Z × Y .
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4. Prediction of the spatio-temporal random field

The local representation of the random field Z can be used for different purposes. A typical
task is prediction of the modelled phenomenon at unobserved locations in space and time.
To produce such predictions from a local neighbourhood, every unobserved location needs to
be grouped with its d closest, i.e., strongest correlated, observed neighbours. Conditioning
the d+1-dimensional copula c∆h on the observed values, yields a 1-dimensional distribution of
the phenomenon. This conditional distribution can then be used to calculate the expected
value (Equation 6), median or any other desired quantile (Equation 7) denoting for instance
confidence intervals. At any location s0 ∈ S, the predictors for the mean value Ẑm and
quantile values Ẑp for any p ∈ (0, 1) are:

Ẑm(s0) =

∫
R
z · f∆

h (z|y0, z1, . . . , zd) dz

=

∫
[0,1]

F−1
0 (u) c∆h

(
u|v0, u1, . . . , ud

)
du (6)

Ẑp(s0) = F−1
0

(
C∆

h
−1

(p|v0, u1, . . . , ud)
)

(7)

where ui = Fi(zi) = Fi

(
Z(si, ti)

)
for 1 ≤ i ≤ d and v0 = G0(y0) as before. The equality for

Ẑm is based on a probability integral transform. An advantage of this approach is that the
conditional distribution describing the random field at the unobserved location may take any
form. This is different from kriging, where every predictive distribution is again a normal
distribution. This richer flexibility has the potential to provide more realistic uncertainty
estimates. Another advantage that is immediate from Equation 6 and Equation 7 is that the
only information on the marginals needed is their quantile function. This allows for instance
to use approximations derived from the empirical cumulative distribution function without
the knowledge of any explicitly known form of the family’s density. However, the empirical
cumulative distribution function is typically limited to the domain defined by the smallest
and largest observation.

5. Application

The following calculations have been made using R 3.0.2 (R Core Team 2013) and can be
reproduced with the spcopula R package. The demo stCoVarVineCop runs the estimation of
the spatio-temporal vine copula as described below (on a 2 month subset of the full dataset).

Data

The dataset used in this application was obtained from the openly accessible AirBase1, an
European air quality data base maintained by the European Environmental Agency (EEA).
We consider daily mean rural background PM10 concentrations (particulate matter smaller
than 10 µm in diameter) in µg/m3 across Europe for the entire year 2005. The data consists
of 194 rural background stations with some missing observations at random points in time. A
histogram of the skewed distribution is depicted in Figure 4. Preliminary results of this study
excluding covariates and station wise marginal distributions were presented by Gräler and

1available from http://acm.eionet.europa.eu/databases/airbase/

http://acm.eionet.europa.eu/databases/airbase/
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Figure 4: Histogram of the daily mean PM10 rural background concentrations across Europe
during the year 2005. 60 observations extend beyond the plot up to approximately 400 µg/m3.

Pebesma (2012) and the same data set has been analysed by Gräler, Gerharz, and Pebesma
(2012) using spatio-temporal approaches based on kriging. As a covariate, we included daily
mean PM10 concentrations derived from model driven estimates by the European Monitoring
and Evaluation Programme (EMEP 2007). The 50 km EMEP Polar Stereographic grid is
converted and projected to match the 10 km gridded interpolation domain in the standard
EEA ETRS89-LAEA5210 projection.

Marginal distributions Fs and Gs

We fit marginal distributions for each location s ∈ S based on the time series leading to
margins Fs and Gs for daily mean PM10 measurements and EMEP model estimates respec-
tively. This leads to a slightly less general set-up as introduced earlier where the marginal
distributions might as well change over time. Using the evd R package (Stephenson 2002),
a generalized extreme value distribution is automatically fitted to each station’s time series
of PM10 and the EMEP model estimates. The assumptions of a single marginal distribu-
tion describing all stations could not be verified for either variable, as too many stations
rejected these distributions in a Kolmogorov–Smirnov test. Obviously, these marginal distri-
butions can only directly be fitted where we observed data. For an interpolation scenario,
the marginals need to be extended towards prediction locations as well. Assuming that the
marginal distributions change rather smoothly over space, we use two different models based
on spatial proximity. One relies on a linear model incorporating the locations’ coordinates
and altitude followed by an inverse distance weighted interpolation of the residuals and the
second one uses only inverse distance weighted means of the local neighbourhood’s marginal
parameters as estimates. Both approaches only use the spatially closest 9 locations for the
inverse distance weighted means. Even though the spatio-temporal field we are modelling is
not assumed to be stationary, we assume that the local dependence structure is the same all
over Europe and can sufficiently be described by a station’s 9 strongest correlated neighbours
from up to 4 preceding time steps. In the following code snippets, we assume EU_RB_2005

to be a spatio-temporal full data frame (class STFDF, see the documentation of spacetime
(Pebesma 2012) for details) that holds the already station-wise marginal transformed data
and model estimates denoted as marPM10 and marEMEP respectively.
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Figure 5: Correlation structure of daily mean PM10 measurements and EMEP predictions
over time. The grey line indicates daily Kendall’s tau values while the red step function
describes weekly empirical Kendall’s tau values. The black line segments denote the copula
family best describing the dependence structure during each week for the given empirical
correlation (without any particular ordering).

Covariate copula CZY

Starting with the covariate copula cZY , we investigate the correlation structure of the daily
mean PM10 measurements and EMEP model estimates over time. Figure 5 illustrates how the
strength of correlation and the dependence structure changes throughout the year 2005. We
use weekly correlations (red line in Figure 5) averaging out a great deal of variation, but largely
maintaining the changes over time. The copula families are selected among the elliptical
Gaussian and Student and the Archimedean Clayton, Gumbel, Frank (Nelsen 2006) and Joe
(Joe 1997) copula families as indicated by the black line segments in Figure 5. The marginal
independence of Kendall’s tau ensures that this strength of dependence is the same for the
marginal transformed as well as the raw data. This temporally changing covariate copula
needs to be encoded as function taking the current spatio-temporal indices and returning a
copula object:

R> library("spcopula")

R> coVarCop <- function(stInd) {

+ week <- min(ceiling(stInd[2] / 7), 52)

+ copulaFromFamilyIndex(weekCop[[week]]$family, weekCop[[week]]$par,

+ weekCop[[week]]$par2)

+ }

Spatio-temporal bivariate copula

For the estimation of the spatio-temporal bivariate copula, we follow the suggested procedure
from Section 3 and start by grouping the data into spatial bins for five temporal lags (i.e.,
the same and first to fourth preceding day). For each spatio-temporal lag, the mean distance
of all involved pairs and their Kendall’s tau are calculated by:

R> stBins <- calcBins(EU_RB_2005, "marPM10", nbins = 40, tlags = -(0:4))
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Figure 6: Empirical and modelled values of Kendall’s tau for the bivariate spatio-temporal
copula over five temporal lags.

The resulting object stBins is of type list with entries meanDists denoting the mean spatial
distance of spatio-temporal bins, lagCor holding the correlation values per spatial bin and
temporal lag and lags providing spatial and temporal indices to access the data from the
underlying STFDF. Correlation functions (here five polynomials of degree three each) can
directly be fitted to the above output and are joint in a spatio-temporal dependence function
(stDepFun) through:

R> stDepFun <- fitCorFun(stBins, rep(3, 5), tlags = -(0:4))

Figure 6 illustrates the empirical values of Kendall’s tau per spatial bin and temporal lag
alongside with the corresponding polynomial fits. These polynomials describe how the strength
of dependence changes with spatial and temporal distance. Following the estimation proce-
dure, we need to investigate how the dependence structure, i.e., the copula families change
for different spatial bins and temporal lags. The polynomials describing Kendall’s tau in
terms of distance are used to derive the parameter of a set of copula families and their log-
likelihood is calculated per spatial bin and temporal lag. In case the relationship between
Kendall’s tau and the copula parameters is not unique, the parameter is optimised based
on a log-likelihood approach restricted under the desired value of Kendall’s tau. The func-
tion loglikByCopulasStLags calculates the log-likelihoods per spatial bin and temporal lag
additionally returning the evaluated copula:

R> families <- c(normalCopula(0), tCopula(0),

+ claytonCopula(0), frankCopula(1), gumbelCopula(1),

+ joeBiCopula())

R> loglikTau <- loglikByCopulasStLags(stBins, EU_RB_2005, families,

+ stDepFun)

Copula families considered for the bivariate spatio-temporal copula (families) include the
elliptical Gaussian and Student copulas, the Archimedean Clayton, Frank, Gumbel (Nelsen
2006) and Joe (Joe 1997) copulas. The best fitting copula family is selected based on the
highest log-likelihood.
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Spatial lag

ID 1 2 3 5 6 7 22 23 25 26 27 28 29 30 33
mean dist. [km] 25 61 99 177 216 255 843 881 961 999 1038 1079 1117 1156 1274

∆ = 0 t G t . . . t G . . . G F N F N . . .
∆ = −1 G . . . G F . . . F N F N N
∆ = −2 G . . . G N . . .
∆ = −3 G . . . G N . . .
∆ = −4 G . . . G J . . . J G G N . . .

Table 2: Spatio-temporal bivariate copula family configuration for the first 33 spatial lags as
suggested by the highest log-likelihoods. ∆ indicates the time lag and the copula families are
abbreviated as follows: N = Gaussian, t = Student, C = Clayton, F = Frank, G = Gumbel
and J = Joe.

R> bestFitTau <- lapply(loglikTau,

+ function(x) apply(apply(x$loglik, 1, rank),

+ 2, which.max))

In this application, the copula families change rather little and the Gumbel copula family
(compare Figure 1) dominates the dependence structure. The spatio-temporal bivariate cop-
ula configuration is listed in Table 2. Using the earlier fitted polynomials and this selection
of copula families, the convex combination of copulas (Equation 1 and the following para-
graph) can now be composed to a spatio-temporal bivariate copula. The selected copula fits
listCops and the representative distances listDists are provided as lists with one entry for
each temporal lag. Each of this entries contains a list of copulas in spatially ascending order:

R> distSelect <- function(x) {

+ stBins$meanDists[sort(unique(c(which(diff(x) != 0),

+ which(diff(x) != 0) + 1, 1, 40)))]

+ }

R> listDists <- lapply(bestFitTau, distSelect)

R> famSelect <- function(x) {

+ families[x[sort(unique(c(which(diff(x) != 0),

+ which(diff(x) != 0) + 1, 1, 40)))]]

+ }

R> listCops <- lapply(bestFitTau, famSelect)

As the corresponding Kendall’s tau value used to tune the bivariate copula’s parameter is
calculated for each spatio-temporal distance, the above components and the spatio-temporal
dependence function define the bivariate spatio-temporal copula stBiCop:

R> stBiCop <- stCopula(components = listCops, distances = listDists,

+ tlags = -c(0:4), stDepFun = stDepFun)

Joining vine copula

For the further processing, the data needs to be rearranged in local neighbourhoods. In our
application, we are interested in the nine strongest correlated neighbours. Typically, there
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is no easily identified metric selecting these and we start with a larger static neighbourhood
structure following Figure 2. The function reduceNeighbours selects the n strongest cor-
related neighbours as given in the third argument. To accomplish this, the spatio-temporal
distances of the larger cubic neighbourhood are passed to the spatio-temporal dependence
function stDepFun and the ones with the highest values are selected:

R> stNeigh <- getStNeighbours(EU_RB_2005, var = "marPM10", spSize = 9,

+ tlags = -(0:4), timeSteps = 90, min.dist = 10)

R> stRedNeigh <- reduceNeighbours(stNeigh, stDepFun, 9)

This approach allows to drop missing values and to select the next best (i.e., next strongest
correlated) available neighbour. The argument spSize denotes the number of locations at the
current level including the central location. By setting timeSteps to 90, every location will
only be used at 90 randomly assigned time steps as a centre of the neighbourhood. This way,
only temporal chunks of five consecutive days are used reducing unwanted autocorrelation in
the time series but reflecting the local temporal structure of the phenomenon. With min.dist

one ensures that any pair of neighbours has a minimum spatial separation distance (here 10 m).

The conditioning on the covariate EMEP and the evaluation of the spatio-temporal bivariate
copula on the neighbours can be done separately. The spatio-temporal bivariate copula returns
pseudo observations that are the values of the neighbours conditioned on the value of the
central location (ui|0 from Equation 3) incorporating the spatio-temporal distances between
these by

R> condData <- dropStTree(stRedNeigh, EU_RB_2005, stBiCop)

In a loop, the weekly varying copulas as depicted in Figure 5 and encoded as coVarCop are
used to relate the marginal transformed variable PM10 with its covariate EMEP. In order to
select the appropriate copula, the spatio-temporal indices need to be retrieved from the larger
neighbourhood:

R> condCoVa <- condCovariate(stNeigh, coVarCop)

Binding this conditioned column condCoVa with the conditioned data from the spatio-temporal
bivariate copula condData yields the data set for the upper vine estimation through the generic
function fitCopula:

R> secTreeData <- cbind(condCoVa, as.matrix(condData@data))

R> vineFit <- fitCopula(vineCopula(10L), secTreeData)

Following the initial definition of the function fitCopula, the copula family that should be
fitted needs to be provided as copula object. The call of the constructor vineCopula with an
integer as argument (denoting the dimension) generates a canonical vine with independence
copulas. The fitting routine sequentially selects the best fitting copula from a versatile set
of copulas (see the documentation of VineCopula). The final spatio-temporal covariate vine
copula is defined by:

R> stCVVC <- stCoVarVineCopula(coVarCop, stBiCop, vineFit@copula)
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The cross-validation carried out to assess the goodness of fit of this spatio-temporal vine
copula drops the complete time series of each location in turn and predicts this time series
based on the neighbouring data. In this application, we predict the expected value as given
in Equation 6 of the time series for each moment in time. Prediction for a spatio-temporal
target geometry targetGeom from the spatio-temporal vine copula is obtained by:

R> predNeigh <- getStNeighbours(EU_RB_2005, targetGeom,

+ spSize = 9, tlags = -(0:4),

+ var = "marPM10", coVar = "marEMEP",

+ prediction = TRUE, min.dist = 10)

R> predNeigh <- reduceNeighbours(predNeigh, stDepFun, 9)

R> stVinePred <- stCopPredict(predNeigh, stCVVC, list(q = qFun),

+ method = "expectation")

Where the argument method selects from the prediction methods expectation and quantile

as given in Equation 6 and Equation 7 respectively. The default quantile is the median, but
any fraction between 0 and 1 can be assigned to an argument p. This can also be used
for simulation purposes, as simulated values can be obtained through uniform distributed
fractions assigned to p.

6. Results and discussion

Performing a cross-validation by leaving one complete station time series out in turn, the
performance of this approach is assessed. Table 3 lists the results of a cross-validation using
the expectation predictors for the newly presented spatio-temporal covariate vine copula ap-
proach (STCV) for different margins, a STCV solely composed out of Gaussian copulas and
the simpler spatio-temporal copula presented in Gräler and Pebesma (2012). Additionally,
results of a cross-validation for an approach based on spatio-temporal metric residual kriging
with an underlying log-linear regression of the same data set but incorporating 100 nearest
neighbours (Gräler et al. 2012) is presented. In the case where the marginals refer to local
GEV, the station-wise estimates are used. This is only possible in the case of a cross-validation
as in a typical prediction or simulation application one would not have this extra knowledge
about the margins. This can be seen as a very good model of the marginals across space
as the distributions of the margins are still not known, but extra data is used to estimate
them. Hence, in a realistic cross-validation scenario, an additional model on the marginal
distributions’ parameters needs to be used. Here, we fitted two models for each of the three
parameters. One using a linear model including coordinates and the station’s altitude and
performing a inverse distance weighted interpolation on the residuals of the spatially closest 9
neighbours (denoted lm+IDW ) and another using only an inverse distance weighted interpo-
lation of the spatially closest 9 neighbours (denoted IDW ). The major benefit in Table 3 is due
to the additional knowledge on the marginal distribution functions. A smaller improvement
could be made for the STCV using the lm+IDW marginal distributions but these statistics
are within the same order of magnitude as the earlier presented spatio-temporal vine copula
or the kriging predictor. These results underline how important it is to obtain good fits of
both, the copula and the marginal distributions.

Besides looking at pure cross-validation statistics, it is important to consider the reproduction
of the full distribution. Figure 7 shows boxplots of the observed versus modelled time series at
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Dependence model Margin RMSE MAE ME COR

STCV Ẑm local GEV 8.53 4.61 -0.05 0.84

Gaussian STCV Ẑm local GEV 8.65 4.59 0.08 0.83

STCV Ẑm lm+IDW GEV 10.12 5.79 0.17 0.76

STCV Ẑm IDW GEV 10.82 6.26 0.14 0.72
metric res. kriging log linear reg. 10.67 6.16 0.47 0.74

sp.-temp. vine Ẑm global GEV 11.20 6.95 -0.73 NA

Table 3: Cross-validation results comparing the expectation spatio-temporal estimators for
the newly presented spatio-temporal covariate vine copula with different margins, the spatio-
temporal vine copula as in Gräler and Pebesma (2012) and results from an earlier study
by Gräler et al. (2012) using kriging based approaches assuming a metric spatio-temporal
covariance structure of the residuals of log-linear regression.
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Figure 7: Boxplots comparing the different predictors with the observed values at two stations.
The Finish one (left) is an isolated location while the German one (right) is situated in a rather
dense network.
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Figure 8: A subset of the time series at a Finish station comparing different predictors.

two exemplary stations in Finland (FI00351) and Germany (DENW081). The Finish one is
far away from any other station while the German one is situated in a rather dense network.
Looking at many more plots of this kind for several stations (not shown) reveals that the
copula based methods are rather close to each other and represent the original data quite
well. Within the copula approaches, the full cross-validations lm+IDW and IDW have the
largest deviations. The kriging based approach turns out to predict too large as well as too
small ranges of values depending on the single station with a notable shift of the median at
some stations. The issue of failing to reproduce the time series at isolated locations detected
in the first application of a simpler spatio-temporal vine copula (Gräler and Pebesma 2012)
could be overcome with the local GEV margins and considerably improved with lm+IDW and
IDW. In Figure 8 the same temporal subset is plotted as in Figure 3 of Gräler and Pebesma
(2012) but the copula approaches are now able to follow the time series more closely than the
kriging based predictor.

An advantageous feature of the copula approaches is their ability to provide potentially more
reliable uncertainty assessments. Different from kriging, the prediction variance does not only
depend on the spatio-temporal configuration of the locations, but also on the predicted value.
Due to the nature of kriging, every conditional distribution is again a normal distribution.
This is different for the copula approaches where the predictive density can take any form
and the fitted marginal distribution functions ensure a reasonable range of possible values.
Figure 9 illustrates the predictive densities at two different days at location DENW081. Note
that besides the position also the shape of the prediction CDFs changes.

Even though simulating from a spatio-temporal random field modelled by a spatio-temporal
covariate vine copula has not been shown in this application, it is readily done by not predict-
ing for a constant cumulative distribution value but a random p in Ẑp(s, t) for each location
(s, t). In a conditional simulation, it is a modellers choice to which degree already sampled
and closer locations are preferred over conditioning but further apart locations in the local
neighbourhood. Modelling the spatio-temporal random field only locally requires a simula-
tion along a random path. To avoid clustering effects along this path, one might start with
simulations on a regular coarse subset of the target locations and simulate subsequently on
finer regular subsets (Gómez-Hernández 1991).
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Figure 9: Prediction CDFs for station DENW081 at two different days in 2005. The vertical
lines denote the predicted while the symbols on the x-axis indicate the observed value. The
two horizontal lines denote the cumulative probabilities 0.025 and 0.975 easing the assessment
of the 95%-confidence intervals.

Computational cost of the vine copula approaches might be a burden where results need to
be generated very fast. The prediction of approximately 70000 values in the presented cross-
validation takes a bit more than a day on a common laptop. No efforts have been made to
speed up the execution for example by making use of parallel evaluation.

7. Conclusions

The spcopula package allows the modelling of spatial and spatio-temporal random fields by
vine copulas. An earlier study (Gräler 2014) demonstrated the potential of spatial vine copulas
for heavily skewed spatial random fields. The newly presented spatio-temporal covariate vine
copula improves the interpolation of particulate matter compared to earlier spatio-temporal
vine copulas (Gräler et al. 2012) and linear geostatistical approaches. Nevertheless, the current
bottleneck of the presented application is the flexible modelling of marginal distributions. This
became evident by the presented cross-validation using extra knowledge about the margins.

The bivariate spatio-temporal copulas on the first tree mainly incorporate a Gumbel copula
indicating a stronger dependence in the tails, a feature that is not available in a Gaussian set-
up. Each spatio-temporal location has its own individual conditional distribution that is used
for prediction. Different from kriging where each predictive distribution is again Gaussian, the
conditional distributions of the STCV can take any form, potentially providing more realistic
uncertainty estimates. Simulating from the modelled random field is possible and has been
implemented in the presented package. A disjoint modelling of margins and dependence
structure introduces a large flexibility to define a random fields distribution. Nevertheless, it
is very important to obtain good models for both components for a successful application.
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Institute for Geoinformatics

http://acm.eionet.europa.eu/reports/ETCACM_TP_2011_10_spatio-temp_AQinterpolation
http://acm.eionet.europa.eu/reports/ETCACM_TP_2011_10_spatio-temp_AQinterpolation
http://geostats2012.nr.no/1742830.html
http://geostats2012.nr.no/1742830.html
http://dx.doi.org/10.1007/s00477-009-0353-8
http://dx.doi.org/10.1016/j.cageo.2010.06.005
http://dx.doi.org/10.1016/j.cageo.2010.06.005
http://www.jstatsoft.org/v34/i09
http://www.jstatsoft.org/v34/i09
http://www.jstatsoft.org/v51/i07/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v21/i04


Benedikt Gräler 21
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