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Abstract

This introduction to the R package sphet is a (slightly) modified version of Piras (2010),
published in the Journal of Statistical Software.

sphet is a package for estimating and testing spatial models with heteroskedastic in-
novations. We implement recent generalized moments estimators and semiparametric
methods for the estimation of the coefficients variance-covariance matrix. This paper is
a general description of sphet and all functionalities are illustrated by application to the
popular Boston housing dataset. The package in its current version is limited to the esti-
mators based on Arraiz, Drukker, Kelejian, and Prucha (2010); Kelejian and Prucha (2007,
2010). The estimation functions implemented in sphet are able to deal with virtually any
sample size.

Keywords: spatial models, R, computational methods, semiparametric methods, kernel func-
tions, heteroskedasticity.

1. Introduction

sphet is a package for estimating and testing a variety of spatial models with heteroskedastic
innovations. The estimation procedures are based on generalized moments (GM).

An increasing number of datasets contain information on the location of the observations
along with the values of the variables of interest. Taking into account the spatial nature of
the data can improve efficiency or, in some cases, even be essential for consistency. This
increasing interest in spatial data is corroborated by the large number of packages in the R
language (R Development Core Team 2010) for analyzing multiple typologies of spatial data
under different methodological perspectives. Among these alternatives, spdep is one of several
packages that deals with spatial dependence (Bivand 2001, 2002, 2006; Bivand and Gebhardt
2000; Bivand and Portnov 2004). spdep includes functions to create and manipulate spatial
objects (i.e., creating spatial weights matrices). It also contains a collection of tests for spatial
autocorrelation and functions for estimating spatial models. For what concerns estimation
features, general method of moments (GMM), instrumental variables (IV) and maximum
likelihood (ML) are supported.

sphet complements but does not overlap with the econometric features already available in
spdep. Specifically, spdep focuses on spatial lag and error models, whereas our departure
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point is the following model:

y = Xβ + λWy + u (1)

u = ρWu+ ε

Kelejian and Prucha (2007) do not assume any specific structure for the disturbance process.
Their focus is to develop an estimation theory (for the regression parameters) that is robust
against possible misspecification of the disturbances. Nonetheless, the general assumptions
made on the disturbance process cover the spatial autoregressive process as a special case.

Although Model (1) is well established in the econometrics literature, regional scientists and
geographers generally follow a different approach. They start from an OLS regression and try
to determine (via Lagrange multipliers (LM) tests on estimated residuals) whether the true
data generating process is a spatial error, or a spatial lag model. This is unfortunate because
the spatial patterns implied by Model (1) are richer than those implied by either the spatial
error or the spatial lag model (Kelejian and Prucha 1998). We believe that providing this
alternative implementation is a useful contribution to both scientific communities. Related to
this, Kelejian and Prucha (2010) give results concerning the joint asymptotic distribution of
IV and GMM estimators for Model (1). Their results permit testing the (joint) hypothesis of
no spatial spillovers originated from the endogenous variables or from the disturbances. As a
consequence, if one of the corresponding coefficients turns out not to be statistically different
from zero, one could still go back to the estimation of a reduced model.

In sphet, we only concentrate on GM and IV methods, leaving aside the ML approach.
Reasons for this will be discussed throughout the paper. In general terms, GM requires
weaker assumptions than ML. Additionally, there are still various unsolved problems related
to the ML approach. Numerical difficulties related to the computation of the Jacobian term
(Kelejian and Prucha 1998, 1999) may potentially limit the application of ML to large datasets.
However, various solutions have been proposed in the literature that have attenuated the
problem (see e.g., Ord 1975; Smirnov and Anselin 2001; Pace 1997; Pace and Barry 1997;
Barry and Pace 1999; Pace and LeSage 2004, among others). Lee (2004) derives the conditions
that ensure consistency and asymptotic normality of ML estimators for the general spatial
model considered but some of the assumptions are stronger than those required by GM. On
the other hand, there is reasonably general theory for the GM approach in the cross sectional
case (Kelejian and Prucha 1998, 1999, 2010).

One final point relates to the possible presence of heteroskedasticity in the innovations of the
model. Since spatial units may differ in important characteristics (e.g., size) homoskedasticity
is a strong assumption that may not hold in many applied spatial problems. Anselin and
Lozano-Gracia (2008) and Baltagi, Egger, and Pfaffermayr (2008) are two typical examples
of empirical applications that require the use of spatial heteroskedasticity and autocorrelation
consistent (HAC) estimators. The estimation theory developed by Lee (2004) for the quasi-
maximum likelihood estimator under the assumption of homoskedastic innovations does not
carry over to the case of heteroskedastic innovations. To support this, Arraiz et al. (2010)
provide simulation evidence that when the innovations are heteroskedastic, ML produces
inconsistent estimates. We implement various GM and IV procedures to obtain spatial HAC
estimators of the variance-covariance matrix of the model coefficients. In its current version,
the package is limited to methodologies implemented in Kelejian and Prucha (2007, 2010) and
Arraiz et al. (2010). The gstslshet code was tested against the original Stata (StataCorp
2007) code used to produce the simulation results in Arraiz et al. (2010). The function
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stslshac give results like those implemented in Python (van Rossum 1995) and used in
Anselin and Lozano-Gracia (2008). Unfortunately, none of the cited implementations are
available to the general public. The estimation functions implemented in sphet are able to
handle virtually any sample size.

To overcome part of the technical difficulties that arise in the implementation, we make
extensive use of classes of objects defined in spdep as for example spatial weights matrix
objects (of class listw). Furthermore, we also make substantial use of code from the Matrix
package (Bates and Maechler 2010).

The remainder of the present paper is a general description of sphet and all functionalities
are illustrated by application to the popular Boston housing dataset (Harrison and Rubinfeld
1978).

The Boston data contain information on property values and characteristics in the area of
Boston, Massachusetts and has been widely used for illustrating spatial models. Specifically,
there is a total of 506 units of observation for each of which a variety of attributes are avail-
able, such as: (corrected) median values of owner-occupied homes (CMEDV); per-capita crime
rate (CRIM); nitric oxides concentration (NOX); average number of rooms (RM); proportions of
residential land zoned for lots over 25,000 sq. ft (ZN); proportions of non-retail business acres
per town (INDUS); Charles River dummy variable (CHAS); proportions of units built prior to
1940 (AGE); weighted distances to five Boston employment centers (DIS); index of accessibil-
ity to highways (RAD); property-tax rate (TAX); pupil-teacher ratios (PTRATIO); proportion of
blacks (B); and % of the lower status of the population (LSTAT).

The dataset with Pace’s tract coordinates is available to the R community as part of spdep.

The library("sphet") command loads sphet; the data("boston", package = "spdep")

command loads the Boston data from spdep.

R> library("sphet")

R> library(spdep)

R> data("boston", package = "spdep")

The spatial weights matrix is a sphere of influence neighbors list also available from spdep
once the Boston data are loaded:

R> listw <- nb2listw(boston.soi)

2. Tools

sphet supports a series of capabilities to generate distance objects that are required by the
semiparametric estimation of the variance-covariance matrix discussed in Section 3. These
functionalities can be accessed through the functions distance and read.gwt2dist.

The function distance reads points coordinates and generates a matrix. The object created
is similar to the content of a ‘.GWT’ file. A ‘.GWT’ file format is a well known structure among
spatial statisticians and econometricians. These (memory efficient) types of weights matrices
can be calculated using GeoDa (Anselin, Syabri, and Kho 2006) and other softwares. In
fact, one advantage of R over other packages is the availability of these models that are well
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established among users. The generated object is made up of three columns. The third
column lists the distances, while the first two columns contain the id of the two points for
which the distance is calculated.

Currently, five distance measures are implemented, namely: Euclidean (dij =
√∑

(xi − yi)2),
Chebyshev (dij = max(|xi − yi|)), Bray-Curtis (dij =

∑
|xi − yi|/

∑
|xi + yi|), Canberra

(dij =
∑
|xi − yi|/

∑
|xi|+ |yi|) and the Great Circle distance. For details on how to calculate

this last distance measure one should see the function rdist.earth in the package fields
(Furrer, Nychka, and Sain 2009).

The following instructions demonstrate the usage of the function distance. We first generate
a set of XY- coordinates corresponding to one hundred points. The first coordinate is a
random sample from the uniform distribution on the interval (0, 70), whereas the second
coordinate is generated on the interval (−30, 20). The object coord1 is a matrix whose first
column is intended to contain the identification for the points.

R> set.seed(1234)

R> X <- runif(100, 0, 70)

R> Y <- runif(100, -30, 20)

R> coord1 <- cbind(seq(1, 100), X, Y)

The (optional) id variable has the principal scope of providing the ordering of the observations.
When specified, it could be the first column of the argument coord. Alternatively, it could
be specified separately as region.id. When region.id is not NULL and coord has three
columns (i.e., an id variable has been specified twice) the function performs some checks to
make sure that the two variables point to the same ordering. On the other hand, if an id
variable is not specified at all, it is assumed to be a sequence from one to the number of
observations (i.e., the number of coordinates).

R> thm1 <- distance(coord = coord1, region.id = NULL, output = FALSE, type = "inverse", measure = "euclidean")

R> print(thm1[1:15, ])

from to distance

[1,] 1 2 0.02253759

[2,] 1 3 0.02718421

[3,] 1 4 0.02727669

[4,] 1 5 0.01903487

[5,] 1 6 0.02524238

[6,] 1 7 0.10601540

[7,] 1 8 0.10451947

[8,] 1 9 0.02297026

[9,] 1 10 0.03566487

[10,] 1 11 0.01891036

[11,] 1 12 0.03293253

[12,] 1 13 0.02116495

[13,] 1 14 0.01759159

[14,] 1 15 0.06439619

[15,] 1 16 0.01492178
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The measure argument specifies the distance measure and should be one of "euclidean",
"gcircle", "chebyshev", "braycur", and "canberra". The type argument is used to define
the distance criteria and should be one of "inverse", "NN" or "distance". Both "inverse"

and "distance" can be specified along with a cutoff. The cutoff takes up three values:
1, 2, and 3 indicating the lower, median and upper quantile of the distance distribution.
Specifically, when cutoff is set to 1, only observations within a distance less than the first
quantile are neighbors to each other. All other interactions are considered negligible. "NN"

(nearest neighbors) should be specified along with nn, the argument to define the number of
nearest neighbors, as it is illustrated in the following example.

R> thm2 <- distance(coord1, region.id = NULL, output = FALSE, type = "NN", nn = 6)

R> print(thm2[1:15, ])

from to distance

[1,] 1 7 9.432592

[2,] 1 8 9.567595

[3,] 1 19 6.744797

[4,] 1 55 10.333073

[5,] 1 65 9.115394

[6,] 1 93 4.854875

[7,] 2 9 7.165783

[8,] 2 11 8.934840

[9,] 2 41 5.746060

[10,] 2 44 4.185193

[11,] 2 46 8.980557

[12,] 2 66 6.911974

[13,] 3 4 3.929145

[14,] 3 6 3.142958

[15,] 3 9 8.722848

When output is TRUE, the function writes the data to a file. The output file can have any
format. In particular, it could be a ‘.GWT’ file. When firstline is TRUE, an header line is
added to the ‘.GWT’ file. The first element is simply a place holder, the second is the number of
observations. The name of the shape file and of the id variable can be specified by the options
shape.name and region.id.name respectively. If an output file is produced, the name of the
file can be set by file.name.

R> thm3 <- distance(coord1, region.id = NULL, output = TRUE, type = "distance", cutoff = 1, measure = "gcircle", shape.name = "shapefile", region.id.name = "id1", firstline = TRUE, file.name = "dist_100.GWT")

R> class(thm3)

[1] "matrix" "distance.matrix"

The value is a matrix of three columns. The third column lists the distances, while the first
two columns contain the id of the two points for which the distance is calculated.

To create an object of class distance, one should use the function read.gwt2dist, as in the
following example:
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R> id1 <- seq(1, nrow(boston.utm))

R> tmp <- distance(boston.utm, region.id = id1, output = TRUE, type = "NN", nn = 10, shape.name = "shapefile", region.id.name = "id1", firstline = TRUE, file.name = "boston_nn_10.GWT")

R> coldist <- read.gwt2dist(file = "boston_nn_10.GWT", region.id = id1, skip = 1)

The function read.gwt2dist reads a ‘.GWT’ file (e.g., generated using the function distance).
In this example we are using the matrix of tract point coordinates projected to UTM zone
19 boston.utm available from spdep to generate a ‘.GWT’ file of the 10 nearest neighbors.
The file ‘boston_nn_10.GWT” is then inputted to the function read.gwt2dist along with the
region.id.

It is worth noticing that the function read.gwt2dist could also read other extensions (such
as ‘.txt’). It is important, however, that the input file exhibits the general format described
above. When the file has a ‘.GWT’ extension, the number of observations is generally retrieved
from the first line. Alternatively, it is fixed to the length of the (unique) region.id variable.
The argument skip determines the number of lines to disregard before reading the data. The
value is an object of class distance. We generate a new class of objects to be able to perform
some of the checks necessary to make sure that the distance measure specified in the function
stslshac is appropriate.

R> class(coldist)

[1] "sphet" "distance" "nb" "GWT"

A summary method is available to print some of the basic features of the distance object.
In particular, the total number of observations and some general descriptive statistics for
both distances and neighbors are displayed. We believe that this information is of guidance
while choosing the type of bandwidth to employ in the spatial HAC estimation discussed in
Section 3.

R> summary(coldist)

Number of observations:

n: 506

Distance summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5441 0.9588 1.5843 2.0848 2.6389 11.6388

Neighbors summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

10 10 10 10 10 10

3. Estimation functions

Spatial models in sphet are fitted by the functions stslshac and gstslshet. Below, we first
review some of the theory and then demonstrate the use of these functions.
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3.1. Spatial two stages least squares with HAC standard errors

Consider the following spatial model:

y = Xβ + λWy + ε (2)

or also, more compactly

y = Zγ + ε (3)

with Z = [X,Wy] and γ = [β>, λ]>. The presence of the spatially lagged dependent variable
Wy introduces a form of endogeneity. Under typical specifications, Wy will be correlated
with the disturbances ε, which motivates an instrumental variable approach. The spatial
two stage least squares (S2SLS) regression is a straightforward extension of the “classical”
two stage least squares procedure. The selection of instruments as an approximation to ideal
instruments has been extensively discussed in the literature (see e.g., Kelejian and Prucha
1998, 1999; Kelejian, Prucha, and Yuzefovich 2004; Lee 2003, among others) and is based
on the reduced form of the model. In empirical problems, the matrix of instruments can be
defined in the following way:

H = (X,WX, . . . ,W qX) (4)

where, typically, q ≤ 2. The matrix of instruments implemented in sphet isH = (X,WX,W 2X).

The S2SLS estimator for the parameter vector γ can be obtained as:

γ̂S2SLS = [Ẑ>Z]−1Ẑ>y (5)

where Ẑ = PZ = [X, Ŵy], Ŵy = PWy and P = H(H>H)−1H>. Statistical inference is
generally based on the asymptotic variance covariance matrix:

V ar(γ̂S2SLS) = σ̂2(Ẑ>Z)−1 (6)

with σ̂2 = e>e/n and e = y − Zγ̂S2SLS .

Kelejian and Prucha (2007) propose a HAC consistent estimation of the variance covariance
matrix of Model (2). The spatial HAC estimator is robust against possible misspecification of
the disturbances and allows for (unknown) forms of heteroskedasticity and correlation across
spatial units. The disturbance vector is assumed to be generated by the following very general
process:

ε = Rξ (7)

where ξ is a vector of innovations and R is an n×n non stochastic matrix whose elements are
not known. Additionally, R is non-singular and the row and column sums of R and R−1 are
bounded uniformly in absolute value by some constant (for technical details see Lee 2002,
2003, 2004; Kelejian and Prucha 1998, 1999, 2004). This specification of the error term covers
SARMA(p,q) processes as special cases. Even if we assume such a general specification for
the disturbance process we still have to be concerned about possible misspecifications (e.g.,
due to an incorrect specification of the weights matrices). The asymptotic distribution of
corresponding IV estimators involves the variance covariance matrix

Ψ = n−1H>ΣH (8)
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where Σ = RR> denotes the variance covariance matrix of ξ.
Kelejian and Prucha (2007), propose to estimate the r, s elements of Ψ by:

ψ̂rs = n−1
n∑
i=1

n∑
j=1

hirhjsε̂iε̂jK(d∗ij/d) (9)

where the subscripts refer to the elements of the matrix of instruments H and the vector of
estimated residuals ε̂. Kelejian and Prucha (2007) also contains a generalization to several
distance measures. In that case, the expression for the spatial HAC estimator of the true
variance covariance matrix assumes a slightly different form. However, we only implement
the estimator based on the case of a single measure. K() is a Kernel function used to form the
weights for the different covariance elements. The Kernel function is a real, continuous and
symmetric function that determines the pairs of observations included in the cross products
in (9). The Kernel function is defined in terms of a distance measure. More specifically,
d∗ij represent the distance between observations i and j and d is the bandwidth. Note that
Kelejian and Prucha (2007) allows for the case where the researcher measures these distances
with error. More in detail, the distance measure employed by the researcher is given by

d∗ij = dij + υij

where υij denotes the measurement error. The only assumption made on the random mea-
surement error is that it is independent on the innovations of the model ξ. The bandwidth
is such that if d∗ij ≥ d, the associated Kernel is set to zero (K(d∗ij/d) = 0). In other words,
the bandwidth plays the same role as in the time series literature; Together with the Kernel
function it limits the number of sample covariances. Furthermore, the bandwidth can be
assumed either fixed or variable. A fixed bandwidth corresponds to a constant distance for
all spatial units. On the other hand, a variable bandwidth varies for each observation (i.e.,
the distance corresponding to the n-nearest neighbors).

Based on the spatial HAC estimator of Ψ given in (9), the asymptotic variance covariance
matrix (Φ̂) of the S2SLS estimator of the parameters vector is given by:

Φ̂ = n2(Ẑ>Ẑ)−1Z>H(H>H)−1Ψ̂(H>H)−1H>Z(Ẑ>Ẑ)−1 (10)

Therefore, small sample inference can be based on the approximation γ̂ ∼ N(γ, n−1Φ̂).

Demonstration

The function that deals with the spatial HAC estimator is stslshac. Crucial arguments are
listw, distance, type and bandwidth. stslshac requires the specification of two different
lists: one for the spatial weights matrix W and one to define the distance measure d. As in
spdep, listw is the argument that handles the spatial weights matrix W in the form of a
list. The object listw can be generated for example by the function nb2listw available in
spdep. On the other hand, the argument distance that specifies the distance measure, is an
object of class distance created for example by read.gwt2dist. Note that the two objects,
although belonging to a different class, may be generated according to the same definition.

R> res <- stslshac(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data = boston.c, listw, distance = coldist, type = "Triangular", HAC = TRUE)

R> summary(res)
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Stsls with Spatial HAC standard errors

Call:

stslshac(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +

log(LSTAT), data = boston.c, listw = listw, HAC = TRUE, distance = coldist,

type = "Triangular")

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-0.5356002 -0.0758562 -0.0045074 0.0719613 0.7128012

Coefficients:

Estimate SHAC St.Er. t-value Pr(>|t|)

Wy 0.45924669 0.05282792 8.6933 < 2.2e-16 ***

(Intercept) 2.40246917 0.28952447 8.2980 < 2.2e-16 ***

CRIM -0.00735568 0.00157665 -4.6654 3.081e-06 ***

ZN 0.00036435 0.00034007 1.0714 0.2839913

INDUS 0.00119920 0.00161139 0.7442 0.4567549

CHAS1 0.01192878 0.03432896 0.3475 0.7282275

I(NOX^2) -0.28873634 0.11796316 -2.4477 0.0143778 *

I(RM^2) 0.00669906 0.00206524 3.2437 0.0011798 **

AGE -0.00025810 0.00047774 -0.5403 0.5890173

log(DIS) -0.16042849 0.03681622 -4.3575 1.315e-05 ***

log(RAD) 0.07170438 0.01606094 4.4645 8.025e-06 ***

TAX -0.00036857 0.00009780 -3.7685 0.0001642 ***

PTRATIO -0.01295698 0.00394072 -3.2880 0.0010091 **

B 0.00028845 0.00013032 2.2134 0.0268689 *

log(LSTAT) -0.23984212 0.03454865 -6.9422 3.862e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The argument type deals with the specification of the kernel function. Currently, six different
kernels are available:

1. "Epanechnikov": K(z) = 1− z2,

2. "Triangular": K(z) = 1− z,

3. "Bisquare": K(z) = (1− z2)2,

4. "Parzen": K(z) = 1− 6z2 + 6|z|3 if z ≤ 0.5 andK(z) = 2(1− |z|)3 if 0.5 < z ≤ 1,

5. "TH" (Tukey - Hanning): K(z) = 1+cos(πz)
2 ,

6. "QS" (Quadratic Spectral): K(z) = 25
12π2z2

( sin(6πz)/5)6πz/5 − cos(6πz)/5)).

If the kernel type is not one of the six implemented, the function will terminate with an error
message. It is good practice to test the robustness of model specification to different Kernel
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functions. Note that if the argument HAC is set to FALSE (default is TRUE), the “classical” two
stage least square estimator of the variance covariance matrix is provided.

R> res <- stslshac(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data = boston.c, listw, distance = coldist, HAC = FALSE)

R> summary(res)

Stsls

Call:

stslshac(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +

log(LSTAT), data = boston.c, listw = listw, HAC = FALSE,

distance = coldist)

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-0.5356002 -0.0758562 -0.0045074 0.0719613 0.7128012

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

Wy 4.5925e-01 3.8485e-02 11.9330 < 2.2e-16 ***

(Intercept) 2.4025e+00 2.1710e-01 11.0661 < 2.2e-16 ***

CRIM -7.3557e-03 1.0345e-03 -7.1100 1.160e-12 ***

ZN 3.6435e-04 3.9311e-04 0.9268 0.3540112

INDUS 1.1992e-03 1.8365e-03 0.6530 0.5137794

CHAS1 1.1929e-02 2.6632e-02 0.4479 0.6542202

I(NOX^2) -2.8874e-01 9.2546e-02 -3.1199 0.0018091 **

I(RM^2) 6.6991e-03 1.0192e-03 6.5728 4.938e-11 ***

AGE -2.5810e-04 4.0940e-04 -0.6304 0.5284073

log(DIS) -1.6043e-01 2.6107e-02 -6.1451 7.993e-10 ***

log(RAD) 7.1704e-02 1.4926e-02 4.8038 1.557e-06 ***

TAX -3.6857e-04 9.5315e-05 -3.8668 0.0001103 ***

PTRATIO -1.2957e-02 4.1334e-03 -3.1347 0.0017203 **

B 2.8845e-04 8.0266e-05 3.5937 0.0003261 ***

log(LSTAT) -2.3984e-01 2.2470e-02 -10.6740 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that this last result corresponds to the one obtained by stsls in spdep (with robust

= FALSE). Both functions have a logical argument (W2X) that if set to TRUE (the default) uses
the matrix of instruments H = (X,WX,W 2X) in the spatial two stages least squares. Since
(Kelejian et al. 2004) show the advantages of including W 2X in the matrix of instruments,
we strongly recommend to leave the argument W2X at its default value. In this example, no
substantial differences are observed in terms of significance of the coefficients when using the
robust estimator. It would be good practice to always estimate HAC standard errors at least
to compare them with traditional results. If this leads to different significance levels, one
should always present robust results.
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R> res <- stsls(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data = boston.c, listw = listw)

R> summary(res)

Call:

stsls(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +

log(LSTAT), data = boston.c, listw = listw)

Residuals:

Min 1Q Median 3Q Max

-0.5356002 -0.0758562 -0.0045074 0.0719613 0.7128012

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Rho 4.5925e-01 3.8485e-02 11.9330 < 2.2e-16

(Intercept) 2.4025e+00 2.1710e-01 11.0661 < 2.2e-16

CRIM -7.3557e-03 1.0345e-03 -7.1100 1.160e-12

ZN 3.6435e-04 3.9311e-04 0.9268 0.3540112

INDUS 1.1992e-03 1.8365e-03 0.6530 0.5137794

CHAS1 1.1929e-02 2.6632e-02 0.4479 0.6542202

I(NOX^2) -2.8874e-01 9.2546e-02 -3.1199 0.0018091

I(RM^2) 6.6991e-03 1.0192e-03 6.5728 4.938e-11

AGE -2.5810e-04 4.0940e-04 -0.6304 0.5284073

log(DIS) -1.6043e-01 2.6107e-02 -6.1451 7.993e-10

log(RAD) 7.1704e-02 1.4926e-02 4.8038 1.557e-06

TAX -3.6857e-04 9.5315e-05 -3.8668 0.0001103

PTRATIO -1.2957e-02 4.1334e-03 -3.1347 0.0017203

B 2.8845e-04 8.0266e-05 3.5937 0.0003261

log(LSTAT) -2.3984e-01 2.2470e-02 -10.6740 < 2.2e-16

Residual variance (sigma squared): 0.020054, (sigma: 0.14161)

stsls allows an heteroskedasticity correction to the coefficients’ variance covariance matrix
by setting the argument robust to TRUE. The additional argument legacy chooses between
two different implementations of the robustness correction. When it is set to FALSE (the
default used in our examples), a White consistent estimator of the variance-covariance matrix
is provided. On the other hand, if legacy equals TRUE a GLS estimator is performed that
yields different coefficient estimates. Results are displayed in the following example.

R> res <- stsls(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data = boston.c, listw = listw, robust = TRUE)

R> summary(res)

Call:

stsls(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +

log(LSTAT), data = boston.c, listw = listw, robust = TRUE)
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Residuals:

Min 1Q Median 3Q Max

-0.5356002 -0.0758562 -0.0045074 0.0719613 0.7128012

Coefficients:

Estimate HC0 std. Error z value Pr(>|z|)

Rho 4.5925e-01 4.4828e-02 10.2446 < 2.2e-16

(Intercept) 2.4025e+00 2.6000e-01 9.2401 < 2.2e-16

CRIM -7.3557e-03 1.4999e-03 -4.9042 9.380e-07

ZN 3.6435e-04 3.2956e-04 1.1056 0.2689200

INDUS 1.1992e-03 1.5598e-03 0.7688 0.4420040

CHAS1 1.1929e-02 3.2084e-02 0.3718 0.7100470

I(NOX^2) -2.8874e-01 1.0235e-01 -2.8211 0.0047852

I(RM^2) 6.6991e-03 1.7285e-03 3.8757 0.0001063

AGE -2.5810e-04 4.3159e-04 -0.5980 0.5498210

log(DIS) -1.6043e-01 3.0484e-02 -5.2627 1.420e-07

log(RAD) 7.1704e-02 1.5858e-02 4.5216 6.137e-06

TAX -3.6857e-04 9.8735e-05 -3.7329 0.0001893

PTRATIO -1.2957e-02 3.7330e-03 -3.4709 0.0005187

B 2.8845e-04 1.0412e-04 2.7703 0.0056004

log(LSTAT) -2.3984e-01 3.1408e-02 -7.6365 2.243e-14

Residual variance (sigma squared): 0.020054, (sigma: 0.14161)

The heteroskedasticity correction leads to results similar to those obtained with the spatial
HAC estimator implemented in sphet (on the Boston housing data). The spatial HAC seems
to be more conservative in that it changes the significance level of some of the variables (i.e.,
NOX2, RM2 and B).

The argument bandwidth by default sets the bandwidth for each observation to the maximum
distance for that observation. Alternatively, a fixed bandwidth can be used as in the next
example that fixes as bandwidth the maximum distance (overall).

R> fix <- max(unlist(attributes(coldist)$GeoDa$dist))

R> res <- stslshac(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data = boston.c, listw, distance = coldist, type = "Parzen", bandwidth = fix)

R> summary(res)

Stsls with Spatial HAC standard errors

Call:

stslshac(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +

log(LSTAT), data = boston.c, listw = listw, distance = coldist,

type = "Parzen", bandwidth = fix)

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.



Gianfranco Piras 13

-0.5356002 -0.0758562 -0.0045074 0.0719613 0.7128012

Coefficients:

Estimate SHAC St.Er. t-value Pr(>|t|)

Wy 0.45924669 0.05697902 8.0599 7.634e-16 ***

(Intercept) 2.40246917 0.31795278 7.5561 4.155e-14 ***

CRIM -0.00735568 0.00188529 -3.9016 9.555e-05 ***

ZN 0.00036435 0.00038618 0.9435 0.3454415

INDUS 0.00119920 0.00168144 0.7132 0.4757243

CHAS1 0.01192877 0.03516686 0.3392 0.7344553

I(NOX^2) -0.28873634 0.13602087 -2.1227 0.0337760 *

I(RM^2) 0.00669906 0.00269441 2.4863 0.0129088 *

AGE -0.00025810 0.00055829 -0.4623 0.6438569

log(DIS) -0.16042849 0.04435452 -3.6170 0.0002981 ***

log(RAD) 0.07170438 0.01742553 4.1149 3.873e-05 ***

TAX -0.00036857 0.00010993 -3.3526 0.0008006 ***

PTRATIO -0.01295698 0.00450533 -2.8759 0.0040285 **

B 0.00028845 0.00016362 1.7629 0.0779146 .

log(LSTAT) -0.23984212 0.03955045 -6.0642 1.326e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary and print methods are available. The summary method provides a short description
of the model followed by a printout of the most recent call, a summary of the residuals, and
the table of the results. The first row of the table of estimated coefficients is always the spatial
lag of the dependent variable Wy. Note that the name of the column of the standard errors
clearly make reference to the use of the spatial HAC estimator. On the other hand, the print
method simply prints basic information.

One final point deserves to be mentioned. As we anticipated in the introduction, we are not
giving much attention to the ML approach because of various shortcomings. It is technically
possible, however, to make heteroskedasticity corrections to standard errors in a ML context
using functions in the lmtest (Zeileis and Hothorn 2002) and sandwich (Zeileis 2004, 2006)
packages.1 An example on how to perform the correction is given in the help file of the
function bptest.sarlm available from spdep. We run this example on the Boston data set
and we did not observe big shifts in the estimated coefficients or substantial differences in
their significance.

3.2. General spatial two stage least squares

In Section 3.1 we assumed a very general form for the disturbance process. As an alterna-
tive, one could assume that the disturbance process is known to follow a first order spatial
autoregressive process

ε = ρWε+ ξ (11)

1As a referee correctly pointed out, to fully explore the ML approach one would need to implement vcov

methods for lagsarlm. The theory has not yet been developed and therefore we leave this for future develop-
ments.
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where the innovations ξ1, . . . , ξn are assumed independent with zero mean and non-constant
variance σ2i . Kelejian and Prucha (2010) define a GM estimator for ρ and give results for
both consistency and asymptotic normality. Note that Kelejian and Prucha (1999) had only
proven consistency of the GM estimator under the assumption of homoskedastic innovations.
In other words, ρ was seen as a nuisance parameter (e.g., the distribution of the regression’s
parameters does not depend on the estimator for ρ). Kelejian and Prucha (2010) also give
results for the joint asymptotic distribution of the GM estimator for ρ and the IV estimators
for γ. The suggested estimation procedure consists of two steps alternating GM and IV
estimators. Each of the two steps includes sub-steps. In the first step, γ is estimated by
S2SLS with the matrix of instruments defined in Equation 4. The estimated residuals from
the first step are employed to obtain a sample analogue of the moment conditions (for greater
detail on the specification of the moments conditions see Kelejian and Prucha 2010; Arraiz
et al. 2010). An initial GM estimator for ρ is defined in terms of these moment conditions and
S2SLS residuals. The initial estimator can be viewed as an unweighted nonlinear least square
estimator. Although fully consistent, it is not efficient because of a lack of weighting. This is
why in the third sub-step of the first step, an efficient GM estimator for ρ is derived based
on S2SLS residuals and moments conditions appropriately weighted by an estimator of the
variance covariance matrix of the limiting distribution of the normalized sample moments.
Following Kelejian and Prucha (1998), the consistent and efficient estimator for ρ is used
to take a spatial Cochrane-Orcutt transformation of the model. In the second step of the
estimation procedure the transformed model is estimated by S2SLS: this is the generalized
spatial two-stage least square (GS2SLS) procedure presented in Kelejian and Prucha (1998).
Specifically, the GS2SLS estimator for the parameter vector γ is defined as:

γ̃GS2SLS = [Ẑ>∗ Z∗]
−1Ẑ>∗ y∗ (12)

where y∗ = y − ρ̂Wy, Z∗ = Z − ρ̂WZ, Ẑ∗ = PZ∗, and P = H(H>H)−1H>. In the second
and final sub-step of the second step, new sample moments are obtained by replacing S2SLS
residuals by GS2SLS residuals obtained from Equation 12. The efficient GM estimator for ρ
based on GS2SLS residuals is obtained from

ρ̃ = argmin
ρ

[m(ρ, γ̂)>Υ̂−1m(ρ, γ̂)] (13)

where the weighting matrix Υ̂−1 is an estimator of the variance covariance matrix of the
limiting distribution of the sample moments. Under the assumptions made in Kelejian and
Prucha (2010), γ̃ and ρ̃ are both consistent and asymptotically (jointly) normal. Therefore,
small sample inference can be based on the following estimator for the variance covariance
matrix:

Ω̃ = n−1

[
P̃> 0

0 (J̃>Υ̃−1J̃)−1J̃>Υ̃−1

]
Υ̃o

[
P̃ 0

0 Υ̃−1J̃(J̃>Υ̃−1J̃)−1

]

where

Υ̃o =

[
Υ̃γγ Υ̃γρ

Υ̃>γρ Υ̃

]
and Υ̃γγ = n−1H>Σ̃H, Υ̃γρ = n−1H>Σ̃ã. Finally, P , J , Σ and a are all expressions (based on
the instruments and the transformed variables) needed to estimate the asymptotic variance
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covariance matrix of the moment conditions. The tilde explicitly denotes that all quantities
are based on estimated residuals from GS2SLS procedure.

As a final point, a joint test of significance on the spatial coefficients can be derived. Let B
be a 1 × (K + 2) matrix and θ̃ = [γ̃, ρ̃>]> the (K + 2) × 1 vector of estimated parameters
(including the two spatial parameters). A restriction (e.g., that both spatial parameters are
zero) can then be formulated in terms of

Bθ = 0

A Wald test can then be based on (Greene 2003):

Wald = [Bθ̃]>[BΩ̃B>]−1[Bθ̃] (14)

and under H0 will have a chi-squared distribution with one degree of freedom (i.e., the number
of rows in B).

A complication appears from a computational perspective. The estimation of the variance
covariance matrix of the limiting distribution of the normalized sample moments based on
two stages least squares residuals involves the inversion of an n× n matrix. This is the main
reason for transforming the object of class listw into a sparse Matrix and use code from
the Matrix package to calculate the inverse. However, for very large problems the inversion
could still be computationally intensive. In these cases the inverse can be calculated using
the approximation

(I − ρW )−1 = I + ρW + ρ2W 2 + ...+ ρnWn. (15)

where the last element of the sum depends on each specific W and ρ and is determined
through a condition. 2 For particular spatial weights matrices the results obtained using the
approximation could be very close to the actual inverse of the variance covariance matrix.
Furthermore, the inverse only influences the expression of the estimated variance covariance
matrix of the limiting distribution of the normalized sample moments based on 2SLS residuals.
In other words, small differences in the weighting matrix may imply even smaller differences
in the estimated value of the spatial parameter resulting from the optimization procedure. As
an example, on the Boston data the value of ρ resulting from the correct inverse is 0.1778462.
If using the the approximation the value of ρ turns out to be 0.1779276. We would suspect
that with larger datasets (for sparse W ) the difference should be even smaller.

A second issue is related to the initial values of the optimization search for the parameter
ρ.3 The default is to start from 0.2. As an alternative the user can either specify a different
value or take as initial value the estimated coefficient of a regression of the S2SLS residuals
on their spatial lag (i.e., fit a spatial autoregressive model on the residuals). The initial value
in successive steps is the optimal parameter in previous steps.

Demonstration

The function that allows estimating the model described in this Section is gstslshet. It
is also possible to estimate a restricted version of the model for which the parameter λ is

2Roughly speaking, the function will keep adding terms until the absolute value of the sum of all elements
of the matrix ρiW i is greater than a fixed ε.

3 After checking different alternatives, we decided to use the function nlminb in the optimization of the
objective function since it appears to reduce computational time.
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set to zero by changing the logical argument sarar. Such a model is generally referred
to in the literature as a spatial error model (Anselin 1988). The syntax of the function is
straightforward in its basic arguments. The model to be estimated is described by a formula,
an optional data.frame can be specified, and the spatial weights matrix is an object of class
listw. The argument initial.value manages the starting point of the optimization process
in the search for the optimal ρ. The default value for initial.value is 0.2. Any other
numeric value (within the search interval) is acceptable. Alternatively, if initial.value is
set to "SAR" the optimization will start from the estimated coefficient of a regression of the
2SLS residuals over their spatial lag.

R> res <- gstslshet(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data = boston.c, listw = listw, initial.value = 0.2)

R> summary(res)

Generalized stsls

Call:

gstslshet(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +

log(LSTAT), data = boston.c, listw = listw, initial.value = 0.2)

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.56939 -0.07316 -0.00168 0.00053 0.07150 0.74031

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.51316605 0.26749367 9.3952 < 2.2e-16 ***

CRIM -0.00662744 0.00144522 -4.5858 4.523e-06 ***

ZN 0.00038299 0.00036563 1.0475 0.2948733

INDUS 0.00159352 0.00179772 0.8864 0.3753967

CHAS1 -0.00447974 0.03689065 -0.1214 0.9033480

I(NOX^2) -0.27295899 0.11561412 -2.3609 0.0182283 *

I(RM^2) 0.00744059 0.00199637 3.7270 0.0001937 ***

AGE -0.00045400 0.00045572 -0.9962 0.3191333

log(DIS) -0.16517174 0.03484858 -4.7397 2.140e-06 ***

log(RAD) 0.07453521 0.01752830 4.2523 2.116e-05 ***

TAX -0.00041956 0.00010763 -3.8981 9.697e-05 ***

PTRATIO -0.01412661 0.00410143 -3.4443 0.0005725 ***

B 0.00035970 0.00011182 3.2168 0.0012964 **

log(LSTAT) -0.24593826 0.03213364 -7.6536 1.954e-14 ***

lambda 0.42407826 0.04463747 9.5005 < 2.2e-16 ***

rho 0.29587455 0.08614291 3.4347 0.0005932 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Wald test that rho and lambda are both zero:

Statistics: 92.595 p-val: 6.417e-22
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The argument inverse (default: TRUE) should be altered only when strictly necessary depend-
ing on the number of cross sectional observations. In this case, the inverse will be calculated
by Equation 15. The precision of the approximation can be managed through the argument
eps. The next example illustrates the use of the approximated inverse in the context of a
model where λ is assumed to be zero (sarar = FALSE).

R> res <- gstslshet(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data = boston.c, listw = listw, initial.value = 0.2, inverse = FALSE, eps = 1e-18, sarar = FALSE )

R> summary(res)

Generalized stsls

Call:

gstslshet(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +

log(LSTAT), data = boston.c, listw = listw, initial.value = 0.2,

eps = 1e-18, inverse = FALSE, sarar = FALSE)

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.83800 -0.09179 -0.00405 0.00096 0.09557 0.89644

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 4.03649663 0.24703623 16.3397 < 2.2e-16 ***

CRIM -0.00660146 0.00136354 -4.8414 1.289e-06 ***

ZN 0.00027056 0.00041940 0.6451 0.518864

INDUS 0.00039648 0.00244150 0.1624 0.870997

CHAS1 -0.00905744 0.04181711 -0.2166 0.828523

I(NOX^2) -0.35168188 0.16150148 -2.1776 0.029438 *

I(RM^2) 0.00778390 0.00249859 3.1153 0.001838 **

AGE -0.00078626 0.00052412 -1.5002 0.133573

log(DIS) -0.13775233 0.05362777 -2.5687 0.010209 *

log(RAD) 0.07034884 0.02122046 3.3151 0.000916 ***

TAX -0.00049033 0.00012096 -4.0538 5.040e-05 ***

PTRATIO -0.02181338 0.00466238 -4.6786 2.888e-06 ***

B 0.00056242 0.00012377 4.5441 5.516e-06 ***

log(LSTAT) -0.29352100 0.03656123 -8.0282 9.891e-16 ***

rho 0.67496196 0.04584224 14.7236 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

After a brief description of the model, the summary method prints the most recent call along
with a summary of the residuals and the table of the estimated coefficients. The last rows
of the table contain the spatial coefficients: the spatial autoregressive (λ) and the spatial
autocorrelation (ρ) coefficients for the full model, and the spatial autocorrelation coefficient
when the option sarar is FALSE. For the general case of the unrestricted model, after the table
of estimated coefficients, the summary method reports the results of a Wald test that both
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spatial coefficients are zero. The p-val can be used to test the significance of the chi-squared
statistics. As before, the print method only displays basic information.

4. Conclusions and future development

The sphet package currently contains most of the newly developed robust methodologies in
spatial econometrics (Kelejian and Prucha 2007, 2010).

A possible addition could be the implementation of the methodology proposed in Conley
(1999) and Conley and Molinari (2007). Also several alternative HAC estimators could be
added such as, for example, those presented in Bester, Conley, Hansen, and Vogelsang (2009);
Ibragimov and Müller (2010); Pinkse, Slade, and Shen (2006)

Other planned additions include Pinkse, Slade, and Brett (2002) and Driscoll and Kraay
(1998) that relate to a panel data model in which the number of time periods T limits to
infinity.
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