
 1 2014-08-17

T-LoCoH for R
Tutorial and Users Guide

August 17, 2014

Andy Lyons

ajlyons@users.r-forge.r-project.org

http://tlocoh.r-forge.r-project.org

Table of Contents

1. Introduction ...2
2. Installation ..3

Updates and Support ...3
3. T-LoCoH Objects ..3

locoh-xy objects ..3
locoh-hullset objects ..4

4. Workflow Overview ..4
5. Exercise: Analysis of Buffalo Movement ..5

Preparing the data ..6
Create a locoh-xy object ..8

Duplicate Points Pt. 1 ..8
Removing 'Bursts' ... 11

Taking Subsets of a LoCoH-xy Object ... 12
Creating an Animation .. 12

Determine the Space-Time Balance ... 12
Identify Nearest Neighbors .. 15

Checking the Effects of s ... 16
Save Your Data to Disk ... 16

Create Hullsets .. 17
Duplicate Points Pt. 2 .. 17

The a-method .. 20
Compute Additional Hull Metrics .. 22

Elongation ... 23
Time-Use Metrics .. 24

Examining Hull Metrics .. 26
Behavior Isopleths ... 26

6. References... 33
Appendix I. Glossary .. 34

Appendix II. Manually Installing the T-LoCoH Package ... 36
1. Install the Dependent Packages .. 36

2. Download the T-LoCoH Package .. 36
3. Install the T-LoCoH Package ... 37

4. Load T-LoCoH into Memory ... 37

mailto:ajlyons@users.r-forge.r-project.org
http://tlocoh.r-forge.r-project.org/

 2 2014-08-17

Appendix III. Importing GPS Data into R ... 38
Importing Coordinates from a Shapefile .. 38

Importing Date-Times ... 39
Time Zones ... 39

Projecting Coordinates into Real World Units ... 40
Appendix IV. Displaying Spatial Data in the Background ... 42

Displaying Shapefiles .. 42
Option 1. Create a csv file ... 42

Option 2. Pass a list object ... 43
Displaying TIFF Files ... 43

Appendix V. T-LoCoH Functions ... 45
Appendix VI. Creating an Animation .. 48

Other Parameters You Can Use to Customize Your Animation 53

1. Introduction

This tutorial explains how to use the T-LoCoH package for R. T-LoCoH is an algorithm for

constructing home ranges and utilization distributions from a series of movement data. T-LoCoH

can also be used for hull-based data exploration, for example investigating spatial patterns in

time use patterns and generating 'behavior maps'. T-LoCoH will work with any set of points, but

many of its features were designed specifically for time stamped locations such as those

collected by a GPS device.

The primary reference for T-LoCoH is below. A copy of the paper is also available on the

T-LoCoH website on R-Forge.

Lyons, A., Turner, W.C., and WM Getz. 2013. Home range plus: A space-time

characterization of movement over real landscapes. BMC Movement Ecology 1:2,

doi:10.1186/2051-3933-1-2.

T-LoCoH is an enhanced version of LoCoH
1
, and can do everything LoCoH can do. The main

analytical improvement of T-LoCoH is the ability to include time into the construction and

analysis of utilization distributions. This allows you to create a greater variety of space use

models in which internal space is differentiated not only by the intensity of use, but also by

behavioral properties such as directionality and time use.

The T-LoCoH package for R (hereafter simply referred to as T-LoCoH) is a software

implementation of the T-LoCoH algorithm. T-LoCoH has some performance gains over the

implementation of LoCoH in the Adehabitat R package (e.g., it can handle larger datasets). The

package also has several multi-purpose functions such as data cleaning and creating animations

from movement data.

1 see Getz et. al., 2007; also http://locoh.cnr.berkeley.edu/

http://tlocoh.r-forge.r-project.org/
http://www.movementecologyjournal.com/content/1/1/2
http://dx.doi.org/10.1186/2051-3933-1-2
http://locoh.cnr.berkeley.edu/

 3 2014-08-17

2. Installation

T-LoCoH.R is a package (extension) for R
2
. The package isn't on CRAN (yet), but it's on

R-Forge. You can install it by typing at the R prompt:

> install.packages("tlocoh", dependencies=T, repos=c("http://R-Forge.R-project.org" ,

"http://cran.cnr.berkeley.edu"))

Note: the reason you need to specify two repositories in the install.packages function is

because some of the dependent packages are not in the r-forge repositories. The second

repository can be any cran repository.

If installing T-LoCoH from R-Forge doesn't work, perhaps because of an internet connection

problem, you can also do a manual install. For details see Appendix II, page 36.

Once T-LoCoH is installed, you can load it into memory by typing:

> require(tlocoh)

Updates and Support

T-LoCoH for R is a work in progress and updates will be made available as new functions are

added and bugs fixed. To make sure that you stay informed when new versions are available, you

can subscribe to the T-LoCoH mailing list by going to http://tlocoh.r-forge.r-project.org.

As with any new software, bugs are expected. Please report any bugs to T-LoCoH author Andy

Lyons at ajlyons@r-forge.r-project.org.

3. T-LoCoH Objects

T-LoCoH works with two types (classes) of objects in R. Understanding what each of these types

of objects contains will help you understand the workflow
3
.

locoh-xy objects

A locoh-xy object, or lxy for short, contains a series of point locations. This is what you initially

work with when you import your data. A lxy object may also contain the time-stamps for each of

the points, and the id (name) of the individual / device. This means you can have the locations of

multiple individuals in a single lxy object. This can be convenient when you want to construct

home ranges for several animals at once. You could also assign different id values for different

subsets of points that you want to analyze separately, such as wet season and dry season

locations.

A lxy object may also contain what are known as ancillary variables, which are other variables

associated with each point. These can be measurements captured by the GPS device, such as

temperature or head-tilt, or derived variables that you generate in a GIS, such as distance to

water or NDVI. By importing ancillary variables into T-LoCoH, you can create space-use maps

2 http://cran.r-project.org
3 for a detailed description of the data structure, see the vignette T-LoCoH Data Classes

http://tlocoh.r-forge.r-project.org/
mailto:ajlyons@r-forge.r-project.org
http://cran.r-project.org/

 4 2014-08-17

that differentiate internal space by one of these variables, or look for associations between

ancillary variables and things like speed or revisitation.

A lxy object contains two other things that are at the core of T-LoCoH: the parameters for a

random walk null model
4
, and a table of nearest neighbors. These are described in more detail

below, but the advantage of storing them in the lxy object is that you don't have to recalculate

these things each time you want to do an analysis.

A list of functions that work with locoh-xy objects can be found in Appendix V (page 45).

locoh-hullset objects

A locoh-hullset object, or lhs for short, is a set of little convex polygons, or hulls, around each

point. Hulls are at the heart of T-LoCoH, and are the building blocks of isopleths and behavioral

maps. You can think of T-LoCoH as an algorithm that transforms points into hulls. These hulls

do a good job at representing space-use, and if they were constructed with time included will be

'local' both in space and time. Hulls can reveal other things about the movement pattern. For

example we can compute hull metrics for revisitation, duration of use, average speed, elongation,

etc.

A lhs object can contain multiple sets of hulls made with different parameter values, but they

will all be from the same set of original locations. Each set of hulls in a lhs object may also have

isopleths, which are aggregations of hulls, as well hull metrics. Some hull metrics are generated

automatically, such as the hull area and the number of enclosed points, while other metrics are

added manually after the lhs object has been created (such as revisitation and or eccentricity of

the bounding ellipse). lhs objects also contain many of the data from the original locoh-xy object,

including the point ids, ancillary variables, and date stamps.

A list of functions that work with locoh-hullset objects can be found in Appendix V (page 43).

4. Workflow Overview

T-LoCoH does not currently have a one-click wizard or GUI to guide you through the analysis

process. Rather, you must run functions following a workflow that meets your analytical needs.

A generic workflow is provided in Table 1. The initial steps will be the similar for almost all

projects; steps for the analysis will vary a bit based on the objectives of the study.

Step Choices Functions You May Use

Preparation
Getting ready What research questions are you trying to address?

What categories of movement do you anticipate?
What outputs do you want to generate?
 isopleths (utilization distributions)
 hull metrics
 'behavior' maps

published papers
your brain

Import data into R
Create locoh-xy object

Which ancillary variables to include with the locations? xyt.lxy

4 as of T-LoCoH version 1.0.5, the random walk null model is still created by not used in the default method for

identifying nearest neighbors.

 5 2014-08-17

Step Choices Functions You May Use

View map of locations,
distributions of step length,
sampling interval

 plot
hist
lxy.plot.freq

Clean data What shorter-than-normal sampling interval constitutes a
'burst' of points that needs to be thinned?

lxy.plot.freq
lxy.thin.bursts

Produce an animation of the
movement to develop insights
about the patterns

How to set up the frame: extent, label location, GIS
layers, etc.
How long and/or fast should the animation be?
Should frames be time-based or record based?

lxy.exp.mov
lxy.exp.kml

For multi-individual association
analysis, harmonize the sampling
interval and duration of sampling

Which common sampling interval to thin to?
Which time period to examine?

lxy.plot.freq
lxy.thin.byfreq

Create Hulls and Isopleths to Model Space Use

If time stamps are present, select
a value for s

What time scale are you interested in?
View the distribution of s that balances time and space
How 'local' do you want the hulls to be?

lxy.ptsh.add
lxy.plot.sfinder
lxy.plot.mtdr

Identify nearest neighbors What method (k, r, or a)?
What is the maximum value of k/r/a you'll need?

lxy.nn.add
lxy.amin.add

Save your work lxy.save

Create hulls Value(s) of k/r/a lxy.lhs

View summary of hullsets summary

Sort hull (by density) and merge
into isopleths

How many isopleths?
Include the 100% isopleth?

lhs.iso.add

What value of k/r/a gives the
''best" spatial model?

What is a real hole; what is a fake hole?
Which is worse, type I or type II error?

plot
lhs.plot.isoarea

Time-Use and Other Analyses

Compute additional hull metrics
(e.g., time-use metrics,
elongation)

How much time must pass between separate 'visits' (i.e.,
inter-visit gap)?

lhs.visit.add
lhs.ellipses.add
hm.expr

Create other types of isopleths,
such as by time-use, ancillary
variables, etc.

Which metric to use for sorting hulls lhs.iso.add
plot

Examine scatterplots of hull
metrics

Which pairs of metrics?
Which ones are interesting?

lhs.scatter
lhs.scatter.auto

View maps of hull parent points
with a scatterplot legend

Colorize the scatterplot legend by manually drawing
regions or a color wheel

lhs.scatter
plot

Export results for additional
analysis

 lhs.exp.csv
lhs.exp.shp

5. Exercise: Analysis of Buffalo Movement

Normally, the first step in an analysis is importing your data into R, probably in a 'flat' data

structure like a spreadsheet. In addition to finding the right R functions to do this, you may also

have to project the coordinates from latitude-longitude to a real-world coordinate system (like

UTM), and possibly convert the time stamp from GMT to local time. For more information on

these steps, see Appendix III (page 38).

 6 2014-08-17

The T-LoCoH package for R comes with some GPS tracking data for a single buffalo in Kruger

National Park, South Africa
5
. In the following exercise, we will construct both utilization

distributions, as well as look for time-use patterns for our buffalo friend, Toni.

Preparing the data

Let's begin by looking at the buffalo data:

> require(tlocoh)

> data(toni)

> class(toni)

[1] "data.frame"

> head(toni)

 id long lat timestamp.utc

17930 toni 31.75345 -24.16950 2005-08-23 06:35:00.000

17931 toni 31.73884 -24.15402 2005-08-23 07:34:00.000

17932 toni 31.73969 -24.15359 2005-08-23 08:34:00.000

17933 toni 31.73874 -24.15329 2005-08-23 09:35:00.000

17934 toni 31.73946 -24.15336 2005-08-23 10:34:00.000

17935 toni 31.73898 -24.15363 2005-08-23 11:35:00.000

> plot(toni[, c("long","lat")], pch=20)

Looking at the first few rows of the data frame (which is what the head function does), we can

see that we need to project the coordinates from latitude-longitude to a real-world coordinate

system like UTM. Kruger National Park falls in UTM zone 36 south. The following commands

will project the coordinates into that zone.

> require(sp)

> require(rgdal)

> toni.sp.latlong <- SpatialPoints(toni[, c("long","lat")],

proj4string=CRS("+proj=longlat +ellps=WGS84"))

> toni.sp.utm <- spTransform(toni.sp.latlong, CRS("+proj=utm +south +zone=36

+ellps=WGS84"))

> toni.mat.utm <- coordinates(toni.sp.utm)

> head(toni.mat.utm)

 long lat

[1,] 373372.0 7326443

[2,] 371872.3 7328144

[3,] 371958.1 7328192

[4,] 371861.3 7328225

[5,] 371934.5 7328218

[6,] 371886.0 7328187

Looks good so far, but we should probably change the column labels because the coordinates are

not long latitude and longitude anymore:

5 Kruger African Buffalo, GPS tracking, South Africa. Downloaded from http://www.movebank.org, July 2012.

Collection of Kruger Park Buffalo data funded by NSF Grant DEB-0090323 to Wayne M. Getz. Principal

Investigator: Paul Cross

http://www.movebank.org/

 7 2014-08-17

> colnames(toni.mat.utm) <- c("x","y")

> head(toni.mat.utm)

 x y

[1,] 373372.0 7326443

[2,] 371872.3 7328144

[3,] 371958.1 7328192

[4,] 371861.3 7328225

[5,] 371934.5 7328218

[6,] 371886.0 7328187

So now we have a matrix, toni.mat.utm, with the buffalo locations in UTM coordinates. The

last thing we need to do is make sure the timestamps are in the correct time zone. It isn't always

obvious what time zone data time values are saved in, but in our case the column heading gives it

away: timestamp.utc. We need to convert the time stamps from UTC time zone (aka GMT) to

the time zone of the study site, which is GMT+2. Let's first see what data type the current

timestamps are in, which is not obvious just by looking at them:

> class(toni$timestamp.utc)

[1] "factor"

A factor is an efficient way to save character data, but we need to convert the values in that

column to a date-time object which specifies the time zone. After it’s a date-time object, we can

then transform the times to the new time zone.

Let's begin by looking at the first few timestamps, converting the factor to a character:

> head(as.character(toni$timestamp.utc))

[1] "2005-08-23 06:35:00.000" "2005-08-23 07:34:00.000" "2005-08-23 08:34:00.000"

[4] "2005-08-23 09:35:00.000" "2005-08-23 10:34:00.000" "2005-08-23 11:35:00.000"

Next, we'll create a POSIXct vector, specifying what we believe to be the time zone. We'll also

view the first few items to make sure R converted the character data correctly:

> toni.gmt <- as.POSIXct(toni$timestamp.utc, tz="UTC")

> toni.gmt[1:3]

[1] "2005-08-23 06:35:00 UTC" "2005-08-23 07:34:00 UTC" "2005-08-23 08:34:00 UTC"

It looks like R read the character data correctly. So next, we can convert to the local time. Using

the sample code on page 40, we first take note that our computer recognizes the name of the

local timezone (Kruger National Park) as 'Africa/Johannesburg'.

> local.tz <- "Africa/Johannesburg"

> toni.localtime <- as.POSIXct(format(toni.gmt, tz=local.tz), tz=local.tz)

> toni.localtime[1:3]

[1] "2005-08-23 08:35:00 SAST" "2005-08-23 09:34:00 SAST" "2005-08-23 10:34:00

SAST"

 8 2014-08-17

Create a locoh-xy object

We now have all the pieces we need to create a

locoh-xy object: the locations in a real-world

coordinate system, the timestamps in the local

time zone, the name of the individual/device (in

our case the points are just from one animal,

'toni'). However there are two other optional

variables we are not going to include in this

example: unique numeric id values for each

point (which can be useful for linking the hulls

to other information for additional analysis) and

ancillary variables. See the help page for the

xyt.lxy() function for more information about

importing these variables.

Duplicate Points Pt. 1

Duplicate locations are common in GPS datasets, either
because the animal was stationary for a period of time
greater than the sampling frequency, left and returned
to the same location, or because of rounding errors. So
duplicate locations are generally not a problem provided
they were at different times (or there are no time
stamps). Duplicate time stamps are another issue -
when you create a LoCoH-xy object, you'll get an error
message if duplicate time-stamps are detected for the
same individual, which are most likely the result of a
data processing / management error.

> toni.lxy <- xyt.lxy(xy=toni.mat.utm, dt=toni.localtime, id="toni",

proj4string=CRS("+proj=utm +south +zone=36 +ellps=WGS84"))

 595 duplicate xy-time-id rows removed

It seems our data had quite a few duplicate rows, with the same date stamp and location

coordinates. Let's see how many are left by using the summary() function:

> summary(toni.lxy)

Summary of t.LoCoH-xy object: toni.lxy

***Locations

 id num.pts dups

 toni 5776 9

***Time span

 id begin end period

 toni 2005-08-23 2006-04-23 243.3 days

***Spatial extent

 x: 369305.5 - 391823.9

 y: 7305737.9 - 7330491.3

 proj: +proj=utm +south +zone=36 +ellps=WGS84

***Random walk parameters

 id time.step.median d.bar

 toni 3600 (1hs) 173.7575

***Nearest-neighbor set(s):

 none saved

The summary report shows there are still nine duplicate locations, but these have different time

stamps so they were allowed to remain. We'll come back to those duplicate locations later on

when making hulls. The summary report also show the parameters for the random walk null

model, which we'll use later on to compute the time-scaled-distance (TSD) between points. But

first, let's look at some of the properties of these locations.

 9 2014-08-17

> plot(toni.lxy)

The plot of locations tells us firstly that there are no points that are obvious mistakes (for

example points collected when the collar was sitting in the office, or processing mistakes where a

digit was lost). We could also overlay GIS data to make sure our points are where we expect

them (see Appendix IV. Displaying Spatial Data in the Background , page 42). We also take note

that this animal spent most of its time in a fairly tight area, with only a few excursions. But we

also see a little bit of north-south movement, and the colors suggest that the two ends of its range

were used at different times—could this be a seasonal shift?

 10 2014-08-17

Next, let's look at the distribution of locations by date, step length, and sampling interval:

> hist(toni.lxy)

> lxy.plot.freq(toni.lxy, deltat.by.date=T)

FYI: many of the plot functions in T-LoCoH by
default display little green descriptive text at
the bottom. To hide this text, pass the
parameter desc=0

The plots of sampling frequency by date and the number of locations over time show that the

sampling was pretty consistently one hour apart. There are a few gaps particularly toward the end

of the period, but overall this dataset has pretty good temporal consistency which means our

time-use analyses will not be biased by gaps in the data.

 11 2014-08-17

Removing 'Bursts'

Some GPS datasets have the opposite problem of gaps: 'bursts' of points that are closely spaced

in time
6
 - for example several points within a couple of minutes in a dataset that otherwise has a

sampling interval of 1 hour. We need to thin out these bursts of points to avoid bias. We can see

whether our dataset has point bursts by plotting the cumulative percentage of sampling intervals.

> lxy.plot.freq(toni.lxy, cp=T)

Our dataset seems to have only one burst of points (the little dot in the lower left corner), so we'll

go ahead and thin it out. We'll set a threshold of 0.2, meaning that any group of points (or even a

pair) that are less than 0.2 of the median sampling interval will be considered a cluster and

thinned down to one location.

> toni.lxy <- lxy.thin.bursts(toni.lxy, thresh=0.2)

6 note this is a different use of the word 'burst' than some other movement analysis packages (such as the Move

package), where a 'burst' refers to a period of time when the GPS unit was programmed to turn itself on and record

positions. In those cases, the closely timed locations are by no means an error.

 12 2014-08-17

Taking Subsets of a LoCoH-xy Object

If your dataset is huge, for example 100,000 points, and you don't have the patience to wait for R to
create so many hulls (which may not even be necessary if you're just trying to create utilization
distributions), you can create a subset of your LoCoH-xy object using the lxy.subset() function.
This function lets you subset by 1) individual (in the case where your LoCoH-xy object includes the
locations of multiple individuals), 2) index (useful for taking every nth point), or 3) date. To take every
3rd point, for example, you could use the following:

> toni.lxy.every3rd <- lxy.subset(toni.lxy, idx = seq(from=1, to=5775, by=3))

> summary(toni.lxy.every3rd)

Summary of t.LoCoH-xy object: toni.lxy.every3rd

***Locations

 id num.pts dups

 toni 1925 0

***Time span

 id begin end period

 toni 2005-08-23 2006-04-23 243.1 days

***Spatial extent

 x: 369305.494533287 - 391722.010161986

 y: 7305737.86452739 - 7330430.5328576

***Random walk parameters

 id time.step.median d.bar

 toni 10800 (3hs) 462.7666

***Nearest-neighbor set(s):

 none saved

Note when you subset a LoCoH -xy object, any nearest neighbors that were saved are lost and have
to be recreated.

Creating an Animation

Animations can be a good way to view the temporal and spatial patterns in data. T-LoCoH

provides two functions to animate movement data, using Google Earth and QuickTime. See

Appendix VI (page 48) for details.

Determine the Space-Time Balance

Note: If your data have no time stamps, or you are not interested in including time

in the analysis, you can skip this section and let s=0 in subsequent steps.

T-LoCoH calculates the 'distance' between points using a hybrid space-time metric called Time

Scaled Distance (TSD, see Glossary). If we we're only interested in constructing a space-use

model without any consideration of time (i.e., traditional utilization distributions), we could skip

this step and simply set s=0 in the next step (identifying nearest neighbors). But including time is

useful for at least two reasons. First, the utilization distributions we construct when time is

included will do a much better job in capturing temporal partitioning of space. Think for example

about path intersections, which might appear to be a dense blob of points but in fact are used at

different times; including time in the hull construction will pull out the temporal partitioning.

 13 2014-08-17

The other advantage of including time in our hull construction is that it allows us to examine

rates of revisitation and the duration of visits to an area.

T-LoCoH uses a scaling parameter s that controls to the degree to which local hulls are local in

time as well as space. When s=0, time has no influence in picking nearest neighbors, and the

hulls around each point are constructed merely from the closest points in space. At the opposite

end of the spectrum, when s is big the 'closest' points are merely the points closest in time

without regard to space (e.g., a scanning time window). There are two ways to pick s:

Method 1. Pick a value of s such that 40-80% of the hulls are time-selected (recommended

to start with)

Type at the console:

> toni.lxy <- lxy.ptsh.add(toni.lxy)

From the graph read the value of s where the proportion of time selected hulls is between 0.4 and

0.8

Method 2. Select s based on a time interval of interest

To pick a value of s based on a time interval of interest, you need to first think about the time

scale related to your research question. If you're interested in daily foraging behavior, for

example, you might want two points that are a day apart to be not considered nearest neighbors

even if they are close together in space. On the other hand, if you're interested in monthly

movement patterns, points a few days apart should all be candidates as nearest neighbors, and

only points that are several weeks apart should really be penalized as nearest neighbors.

TIP: If you're not sure which time interval may be interesting to look at,

you can try to see the 'natural' frequencies in the data by plotting the

distance of each point to the centroid of the entire dataset over time:

> lxy.plot.pt2ctr(toni.lxy)

s will also depend on your map units, so after you think about your time scale the best thing is to

plot the distribution of s values that equalizes space and time for a range of time scales:

 14 2014-08-17

> lxy.plot.sfinder(toni.lxy)

It looks like for the 24 hour period that we are interested in, the diffusion distance term will be

equal to the spatial terms for half of all pairs of points if s=0.001. We can't see this too clearly so

let's make the plot again, but this time we'll specify the time intervals we're interested in.

lhs.plot.sfinder() has a parameter that lets you specify which time intervals to analyze,

remembering that the time intervals are always entered as a number of seconds (i.e. 1 hour =

3600 seconds).

 15 2014-08-17

> lxy.plot.sfinder(toni.lxy, delta.t=3600*c(12,24,36,48,54,60))

Using this plot as a guide (in particular the distribution of seq for 24 hours), we can see diffusion

distance (time) and space are balanced on average when s is about 0.003. If we pick a value of s

which is a lot more than 0.003, we'll wind up with the temporal difference between points

dominating the selection of nearest neighbors, which is not what we want. So a value around the

median 0.003, is reasonable to start with. After we pick some nearest neighbors using this value

of s, we can plot the actual balance between space and time for actual nearest neighbors.

Identify Nearest Neighbors

The next task is to identify nearest neighbors. There are three methods for identifying nearest

neighbors
7
. The k-method simply finds the k

th
 nearest neighbors around each point (where

'nearest' is determined by the TSD metric, which in turn is influenced by the value of s). The r-

method finds all nearest neighbors with a radius r, and the a-method finds all neighbors whose

cumulative distance is less than or equal to a. You get to decide which method to use, as well as

the value for k, r, or a. A good rule of thumb is to start with the k-method, see what those

isopleths look like, and then if you see outlying points connected with really large hulls that cut

across where the animal clearly did not go, try the a-method (which is less influenced by

outliers).

At this point we have no idea how many nearest neighbors will give the best space use model, so

let's go ahead and identify 25 neighbors per point. We identify nearest neighbors using the

lxy.nn.add() function which returns the original object with the nearest neighbors identified (so

we won't have to identify them again):

> toni.lxy <- lxy.nn.add(toni.lxy, s=0.003, k=25)

7 see Getz et. al 2007

 16 2014-08-17

The summary() function shows us the nearest neighbor table saved:

> summary(toni.lxy)

Summary of t.LoCoH-xy object: toni.lxy

***Locations

 id num.pts dups

 toni 5775 9

***Time span

 id begin end period

 toni 2005-08-23 2006-04-23 243.3 days

***Spatial extent

 x: 369305.494533287 - 391823.930056777

 y: 7305737.86452739 - 7330491.33815097

***Random walk parameters

 id time.step.median d.bar

 toni 3600 (1hs) 173.7452

***Nearest-neighbor set(s):

 1 toni|s0.003|n5775|kmax25|rmax163.7|amax1534.3

The name of the nearest neighbor set created (shown in bold above) tell us something about this

set of neighbors. The s0.003 tells us the value of s that was used in nearest neighbor

identification. We already know that this set of nearest neighbors includes a minimum of 25

neighbors for each and every point (kmax25), but we can also see that this set of neighbors has

enough neighbors for each point to construct hulls using the r-method for values of up to r = 163

(map units, in this case meters), and it will also be sufficient for the a-method with values of a up

to 1534 (map units). If, for example, we decide later on to construct hulls using the a-method

with a larger value of a (say a = 2000), we would need to rerun this function and identify some

more nearest neighbors:

Checking the Effects of s

If we weren't sure about which value of s to use, we could also identify nearest neighbors using a

range of s values and examine the ratios of diffusion distance to TSD using the functions and the

time span of the resulting hulls and using lxy.plot.mtdr() and lxy.plot.tspan(). That would

look like:

> toni.lxy <- lxy.nn.add(toni.lxy, s=c(0.0003, 0.003, 0.03, 0.3), k=25)

> lxy.plot.mtdr(toni.lxy, k=10)

> lxy.plot.tspan(toni.lxy, k=10)

Save Your Data to Disk

Now that we have done so much work importing our data and identifying nearest neighbors, this

would be a good time to save our LoCoH-xy object to disk. R has a great function called save()

that we can use, but T-LoCoH has an even better function, lxy.save(), designed specifically for

locoh-xy objects and automatically generates a filename for you:

> lxy.save(toni.lxy, dir=".")

LoCoH-xy toni.lxy saved to:

 c:\LoCoH\toni.n5775.2005-08-22.2006-04-23.lxy.01.RData

The dir parameter specifies where the file should be saved. In the example above, dir="."

stands for the working directory; you can also use dir="~" to save the file in the R home

 17 2014-08-17

directory, or specify a sub-directory with something like dir="~/buffalo". If a file already exists,

it will increment the number at the end of the filename. To load this object back into memory

another time, you can use R's load() function.

> load(file.choose())

Create Hullsets

The building blocks of all T-LoCoH

analyses are hulls, which are simply

minimum convex polygons

constructed around each point from a

sect of nearest neighbors. Since we've

already identified 25 nearest

neighbors for each point, so we can

create hulls with up to 25 nearest

neighbors each. We don't yet know

how many neighbors will give the

best results—we want hulls that are

big enough that they don't leave lots

of tiny holes in areas the animal uses,

but not so big that they cover large

swaths where the animal was never

seen. So let's create hullsets for a

range of k values from 6 to 24. We'll

use the lxy.lhs() function which

returns a locoh-hullset collection.

Duplicate Points Pt. 2

When identifying nearest neighbors, points that lie on top of each
other will always be selected as nearest neighbors when s=0 (i.e.,
time is excluded), but may not necessarily be considered nearest
neighbors when s>0. Problems arise however when creating local
hulls from a set of nearest neighbors that contains duplicate
locations, because you can't create a minimum convex polygon from
points with the same coordinates. T-LoCoH offers two options to
deal with this. You can ignore duplicate points, although this could
result in some points not getting a hull at all, if the nearest neighbors
don't include at least two unique points. Alternately, duplicate
locations can be randomly offset during the hull construction phase,

resulting in very small (dense) hulls. The offset.dups parameter

in the lxy.lhs() function defaults to offsetting points by 1 map

unit; to ignore them set offset.dups = 0. Note that if you have
duplicate points and offset them in a random direction, then any
ancillary variables that relate to location (e.g., distance to water) will
be off. Also, you won't get the exact same set of hulls if you re-run
the analysis. To detail with this, you should offset duplicate points
before generating hulls.

> toni.lhs <- lxy.lhs(toni.lxy, k=3*2:8, s=0.003)

There are a lot of computations when creating hullsets, so this could take 15 minutes or so. When

done, we can use the summary() command again to see what it contains:

> summary(toni.lhs, compact=T)

Summary of LoCoH-hullset object: toni.lhs

T-LoCoH version: 1.0.5

[1] toni.pts5775.k6.s0.003.kmin0

[2] toni.pts5775.k9.s0.003.kmin0

[3] toni.pts5775.k12.s0.003.kmin0

[4] toni.pts5775.k15.s0.003.kmin0

[5] toni.pts5775.k18.s0.003.kmin0

[6] toni.pts5775.k21.s0.003.kmin0

[7] toni.pts5775.k24.s0.003.kmin0

Next, we'll create isopleths for our hullset. Isopleths are aggregations of hulls sorted in such a

way as to reveal something about space use. The default settings for lhs.iso.add() sorts hulls

according to density, so the isopleths reflect the likelihood of occurrence which is a proxy for

intensity of use.

 18 2014-08-17

> toni.lhs <- lhs.iso.add(toni.lhs)

This will create isopleths for each of the seven values of k we tested. We can plot the isopleths

using the plot() command. We could make a plot with the seven isopleths in separate panels

(figs.per.page=7), but they would turn out awfully small. Instead we'll use the record=T

parameter which will turn on plot recoding so we can flip through the plots using the

PgUp/PgDown keys (Windows) or +left/right arrows (Mac). We'll also turn off the 'user-

friendly isopleth titles' (ufipt=F) because we're scientists not wimps.

> plot(toni.lhs, iso=T, record=T, ufipt=F)

Which one do you think looks best? Again, we're looking for the set of hulls where heavily used

area doesn't look like Swiss cheese, but also doesn't cut across unused areas. This is essentially

finding a balance between Type I error (including area that isn't part of the home range) and

Type II error (omitting area the animal used). Since we don't have perfect knowledge of

everywhere the animal went, and 'home range' is more of an artificial construct we invented to

answer questions as opposed to an 'actual' area on the ground, we have to determine this balance

for ourselves based on our knowledge of the system and the implications (to our research) of

making errors of omission versus errors of commission.

I think I like k=15, because it’s the smallest value of k that fills in most of the holes in the core

area. Let's see what that looks like with the original locations overlaid—we'll make them very

small (cex.allpts=0.1) and light gray (col.allpts="gray30") so they don't hide the detail.

> plot(toni.lhs, iso=T, k=15, allpts=T, cex.allpts=0.1, col.allpts="gray30",

ufipt=F)

 19 2014-08-17

You'll notice that there are some points that aren't included in any of the isopleths. That's because

the largest isopleth (light blue) level is 0.95, meaning that it only encloses 95% of the points.

And because these isopleths are sorted according to density, the 5% of the points not covered by

the 95% isopleth are the least dense. If we wanted to see the 100% isopleth, we could specify the

iso.levels parameter in lhs.iso.add(). But 95% is typically considered the 'home range' so

we'll stop here.

In addition to the isopleth maps, two others piece of information that can help us decide which

value of k to use are 1) the isopleth area curves and 2) the isopleth edge:area curves for the

different values of k we've tested. Let's plot these.

> lhs.plot.isoarea(toni.lhs)

The isopleth area plot shows us the area of each isopleth for the different values of k. What we're

looking for here are sharp jumps in area that indicate that a slightly larger value of k resulted in a

big increase in area – a sign that a big swath of new area was included (which is probably false

commission). If we see such a jump, we want to pick a k value that is lower than the jump. In our

example, we see a bit of jump in the 95% isopleth between k=15 and k=18, so we probably

should look at values of k<=18. If we wanted to continuing refine our space-use model, the next

logical step would be to create hullsets for individual values from say k=12 to k=18, and then

look at those individually before making a final selection.

 20 2014-08-17

Now let's plot the isopleth edge:area ratios.

> lhs.plot.isoear(toni.lhs)

The edge:area curves are simply the ratio of the edge (i.e., total perimeter) to the area for each

isopleth level. High values are indicative of a Swiss cheese pattern – lots of small holes. In

particular, we want to at the edge:area ratio in the 'core' areas, for example the 30
th
 % isopleth

(green line above), because we presume that tiny holes in the core area are probably the result of

too small a value of k (unless we have a reason to suspect that the animal's core area really is

quite patchy). Our curves for Toni reflect what we saw on the map – Swiss cheese looking core

areas for small values of k, that largely fill in around k=15.

If we're pretty sure we like the hulls and isopleths when k=15, we can pull out just those hulls for

the rest of the analysis as follows

> toni.lhs.k15 <- lhs.select(toni.lhs, k=15)

The a-method

The k-method is simple and intuitive – every hull is constructed from the same number of nearest

neighbors. However this doesn't always give good results particularly if the data have both dense

areas and sparse areas (fairly common with free-ranging species). The reason for this is because

you may need a large value of k to fill in the little holes in the denser core areas, but this value of

k may result in humongous hulls in the outlying areas where the points are thin and widely

scattered, overestimating the area used in those area..

 21 2014-08-17

The 'a' in a-method stands for adaptive, because this method is designed to reduce the number of

neighbors used in areas where the points are thin and scattered. Neighbors are identified by

summing up their cumulative distance from the parent point and stopping when you reach a. This

may result in a many points being labeled as neighbors in a dense area (which is what you

probably want), and just a few points in outlying areas (which is also what you want).

The same general workflow applies: 1) identify nearest neighbors (in the LoCoH-xy object), 2)

create hullsets for a range of a values, 3) look at the maps and plot the isopleth areas and

edge:area curves, and 4) test additional a values as needed. However deciding which values of a

to test is not a straightforward or intuitive as picking k, because 1) a is a cumulative distance

from the parent point to the nearest neighbors, and 2) if time is included, the 'distance' between

points is the TSD space-time metric which is not a physical distance.

To help you pick a range values of a to test, you can use the auto.a() function, which will

compute the a value such that p% of points get at least n nearest neighbors, where p and n are

supplied by you. So for example, if we like the results with k=15, we can use auto.a() to tell us

the value of a that will result in 98% of all points having 15 or more nearest neighbors:

> toni.lxy <- lxy.nn.add(toni.lxy, s=0.003, a=auto.a(nnn=15, ptp=0.98))

> summary(toni.lxy)

Summary of t.LoCoH-xy object: toni.lxy

***Locations

 id num.pts dups

 toni 5775 9

***Time span

 id begin end period

 toni 2005-08-23 2006-04-23 243.3 days

***Spatial extent

 x: 369305.494533287 - 391823.930056777

 y: 7305737.86452739 - 7330491.33815097

***Random walk parameters

 id time.step.median d.bar

 toni 3600 (1hs) 173.7452

***Nearest-neighbor set(s):

 1 toni|s0.003|n5775|kmax25|rmax414.5|amax12653.4

 meth ptp nnn a.h tct aVal

 auto.a #1 nn 0.98 15 1 1.05 12652.9

The output from the summary() function tells us that for s=0.003, if a=12653, 98% of the points

will have at least 15 nearest neighbors. This gives us an idea of what range of a values to test. It

would be reasonable for example to create hullsets for a = 8000, 9000, …15000, then look at the

isopleths plots and narrow down the range of values still further until we're happy with the space

use model.

First we identify enough nearest neighbors such that each point has enough neighbors identified

for a=15000.

 22 2014-08-17

> toni.lxy <- lxy.nn.add(toni.lxy, s=0.003, a=15000)

Finding nearest neighbors for id=toni (n=5775), num.parent.pts=5775,

mode=Fixed-a, a=15000, s=0.003, method=diffusion

 - there is already a set of nearest neighbors for this set of parent points

 and value of s.

 - additional neighbors will be identified and appended as needed

 - finding an initial value of k using 30 randomly selected points...Done. Initial k=44

 - computing cumulative distances for k=44

 - 119298 additional neighbors appended

 - computing values of kmax, rmax, and amax...Done

 - set of neighbors (re)named: toni|s0.003|n5775|kmax25|rmax404.9|amax15003.8

Done. Nearest neighbor set(s) created / updated:

 toni|s0.003|n5775|kmax25|rmax404.9|amax15003.8

Total time: 4.4 mins

Next, we create a new hullset object using a values from 4000 to 15000. Note we can tell R to

also create density isopleths using the iso.add argument (as opposed to creating isopleths

separately as we did earlier).

> toni.lhs.amixed <- lxy.lhs(toni.lxy, s=0.003, a=4:15*1000, iso.add=T)

Finally, we can plot the isopleth area and edge:area curves. As before, we're looking for look for

spurious jumps in the area and spurious edginess in the core area. If we were going to continue

with the a-method, we'd need to look at isopleth maps also.

> lhs.plot.isoarea(toni.lhs.amixed)

> lhs.plot.isoear(toni.lhs.amixed)

Compute Additional Hull Metrics

The isopleths we just constructed are a model of how the animal used space. This can be a useful

product in and of itself, if we're doing reserve design for example, or can also an input into

another analysis, such as quantification of site fidelity, range shift, or evaluation of a resource

utilization function.

 23 2014-08-17

But we can also do more with the building blocks of the isopleths – the individual hulls. Because

of the way nearest neighbors were selected, the hulls are localized in both time and space.

Therefore hulls are a good unit of analysis to examine any covariate (or cause) of movement.

Instead of sorting and merging them by density to produce utilization distributions, we can sort

and merge them by some other metric, such as directionality or revisitation rate, to produce what

one might call 'behavior maps' or 'time use maps'.

Several hull metrics are computed when a hullset is first created—you can see them listed with

the summary() function. Other hull metrics are not always needed and have to be created with a

separate function.

Elongation
The eccentricity of the bounding ellipsoid, which can be used as a proxy of elongation or

directionality, is created with the lhs.ellipses.add() function. Computing ellipses is slow (~25

minutes for Toni), but if you want to try it type this
8
:

> toni.lhs.k15 <- lhs.ellipses.add(toni.lhs.k15)

Total time: 24 mins

> summary(toni.lhs.k15)

Summary of T-LoCoH-hullset object: toni.lhs.k15

***Hulls created on: Wed Aug 01 11:11:26 2012

***Individuals analyzed:

 id num.pts dup.loc dup.offset begin end

 toni 5775 9 1 2005-08-23 08:35:00 2006-04-23 15:09:00

***locoh mode: Fixed-k

 k's analyzed: 15

***s: 0.003

***Elements saved:

 hulls nn ellipses

 toni.pts5775.k15.s0.003.kmin0 5775 0 5775

***Hull metrics computed: area, bearing, ecc, nep, nnn, par, perim,

 scg.enc.mean, scg.enc.sd, scg.nn.mean, scg.nn.sd, tspan

The summary() function shows us the number of ellipses that have been computed, and that

eccentricity as one of the available hull metrics. We can view a sample ellipse by setting

ellipses=TRUE in the plot() function. Let's also tell it to plot hulls, nearest neighbors, and all the

other points by setting hulls, nn, and allpts to TRUE. By adding the ptid parameter, it will 'zoom

in' to the hull around the parent point with a specific point id value, and if we set ptid="auto" it

will pick a hull at random. If we want to plot all the ellipses, we could omit the ptid parameter.

8 don't want to wait? you can also download the toni.lhs.k15 object with ellipses computed by entering

mycon <- url("http://tlocoh.r-forge.r-project.org/toni.n5775.s003.k15.elps.iso.lhs.RData")

load(mycon); close(mycon)

 24 2014-08-17

> plot(toni.lhs.k15, hulls=T, ellipses=T, allpts=T, nn=T, ptid="auto")

Figure 1. Sample hull for a single point. Point colors represent continuity in time. The parent-

point is shown by a triangle; nearest neighbors identified using TSD with s=0.003 are

circled. Non-circled points within the hull are closer to the parent point in space but were

bypassed as nearest neighbors due to their separation in time. The ellipse outlined in red is

the bounding ellipse whose eccentricity is one of the metrics of hull elongation.

Below, we will look at the spatial patterns in elongation, but first let's compute some more hull

metrics.

Time-Use Metrics
Other examples of optional hull metrics are time-use hull metrics for revisitation (to the hull) and

the average duration of each visit. These two dimensions of time-use can tell us something about

the behavior of the animal as well as the resources it uses.

revisitation

d
u

ra
ti
o
n

important

seasonal

resources

year-long

resources

infrequently used

resources, search

areas

Figure 2. Time-use space defined by revisitation and duration

When we include time into nearest neighbor selection, we can compute revisitation and duration

for any hull precisely because most hulls will enclose points that were bypassed as nearest

 25 2014-08-17

neighbors because they occurred at different times (Figure 1). In other words, these points

represent other visits to the hull. We can simply count up the number of times the animal visited

the area inside the hull as a measure of revisitation, and how many times on average it was found

in the hull during a single visit as a measure of the mean visit duration.

To compute revisitation and average visit duration, we need to define what a 'visit' is by

specifying the inter-visit gap period (IVG). The IVG is a unit of time that must pass before

another occurrence in the hull is considered a separate visit. This controls for boundary effects

(e.g., the animal steps outside the hull area briefly but comes right back).

The time-use metrics are created with the lhs.visit.add() function. In this example we're

interested in daily cycles to movement, however if we specify an inter-visit of 24 hours, then two

occurrences at a water hole 23 hours apart would be considered the same visit. So let's specify an

inter-visit gap period of 12 hours (remembering that intervals of time are always entered in

seconds):

> toni.lhs.k15 <- lhs.visit.add(toni.lhs.k15, ivg=3600*12)

> summary(toni.lhs.k15)

Summary of T-LoCoH-hullset object: toni.lhs.k15

***Hulls created on: Wed Aug 01 11:11:26 2012

***Individuals analyzed:

 id num.pts dup.loc dup.offset begin end

 toni 5775 9 1 2005-08-23 08:35:00 2006-04-23 15:09:00

***locoh mode: Fixed-k

 k's analyzed: 15

***s: 0.003

***Elements saved:

 hulls nn ellipses

 toni.pts5775.k15.s0.003.kmin0 5775 0 5775

***Auxillary hull metric parameters analyzed:

 ivg: 43200

***Hull metrics computed: area, bearing, ecc, mnlv.43200, nep, nnn,

 nsv.43200, par, perim, scg.enc.mean, scg.enc.sd, scg.nn.mean, scg.nn.sd,

 tspan

***Isopleths saved:

 [1] iso.srt-area.iso-q.h5775.i9

The summary report shows us the new hull metrics that have been created. The new hull metric

nsv.43200 is the measure of revisitation and stands for 'number of separate visits for an inter-visit

gap period of 43200 seconds. mnlv.43200 stands for mean number locations per visit, and is the

measure of average duration.

 26 2014-08-17

Review

So far what we've done is:

1. Thought about our research question, and the temporal scale of the movement

pattern(s) we're interested in

2. Imported the movement data into R, transformed the coordinates from

latitude-longitude to UTM, and converted the date stamps from GMT to the

local time zone.

3. Viewed histograms of the step length and sampling interval, and removed any

short-interval 'bursts' in the data

4. Created an animation of the movement data

5. Picked a value of 's' that balances the influence of space and time for our time

scale of interest

6. Created hulls for a range of k values, then visually selected k=15 as the

smallest k which fills up little holes in what appears to be the core area

7. Created density isopleths (i.e., utilization distribution) for k=15

8. Computed additional hull metrics (ellipses and time-use for an inter-visit gap

of 12 hours)

This would be a good time to save our work:

> lhs.save(toni.lhs.k15)

Examining Hull Metrics

We've created some cool hull metrics that reflect behavioral patterns, including directionality

(eccentricity of bounding ellipse), revisitation rate, and the mean visit duration. Now let's explore

these. There are a few ways we can explore hull metrics:

1. Create and plot isopleths after sorting hulls on a behavioral metric

2. Plot hull parent points colored by the value of a behavioral metric

3. View histograms of pairs of hull metrics

4. Plot hull parent points colored by their location in a 2 dimensional scatterplot space

5. Export all the hull metrics as a table and examine correlations using fancy statistical

analysis (e.g., regression)

Behavior Isopleths
Isopleths usually reflect a gradient of the proportion of known locations, what we might call

density isopleths. This is essentially what a traditional utilization distribution is, it tells you

where the animal spent the most time.

However because isopleths are created from hulls, and hulls have so many more properties than

just point density, we can construct isopleths that reflect other things, such as behavior or time-

use. These will no longer be density isopleths but something akin to a behavior map. Let's begin

by creating and plotting isopleths from hulls sorted by elongation, which is an imperfect measure

 27 2014-08-17

of directional movement but might reveal something interesting. To do this, we use the

lhs.iso.add function again, but this time we'll specify how we want the hulls to be sorted.

> toni.lhs.k15 <- lhs.iso.add(toni.lhs.k15, sort.metric="ecc")

> plot(toni.lhs.k15, iso=T, iso.sort.metric="ecc")

We can see the areas with the greatest elongation (red areas) include those areas where toni was

at the periphery of her home range. You may be wondering why the core area looks like Swiss

cheese now—didn't we select k=15 precisely because it did a good job filling in those little

holes? Yes we did, as seen in the plot of the utilization distribution on page 18. The holes we see

in the core area of the elongation isopleths are there because 1) the biggest isopleth shown is

only 0.95, so 5% of the points are not included, and 2) the hulls have been sorted by elongation,

not density, so the 5% of points that are not enclosed by these isopleths fall in the 5% least

elongated (which tend to be in the core areas where the hulls are more circular).

This plot also reveals some large hulls on the right side where the animal had a single excursion.

These large hulls are not an error, but they definitely over-estimate that portion of the range.

They're large because we used k=15, so every hull was made from its 15 nearest neighbors, and

the points are thin in that part of the range. Before, these large hulls didn't matter too much

because we were looking at the density isopleths, and k=15 did a reasonable job for most of the

range and these big hulls were not even included in the 95% density isopleth. However this is a

good example where we should have used the a-method, which effectively reduces the number

of neighbors used in hull construction in outlying areas.

Next, lets look at the spatial patterns of revisitation. Let's look at both the histogram of

revisitation, as well as a map of hull parent points colored by revisitation rate (nsv).

 28 2014-08-17

> hist(toni.lhs.k15, metric="nsv")

The histogram tells us that the majority of hulls were revisited between 1 and 4 times. There's a

tail of hulls that had seven or more visits. To see where those highly revisited hulls are, let's plot

the hull parent points classified by the nsv metric.

> plot(toni.lhs.k15, hpp=T, hpp.classify="nsv", ivg=3600*12, col.ramp="rainbow")

Our eyes should zoom in on the dark blue and purple dots. They seem to fall in a few different

clusters, suggesting these areas contain resources that toni needed repeatedly. How about we

 29 2014-08-17

zoom into one of those areas? We can do that that by passing to the plot function an area of

interest (aoi) parameter containing the coordinates of the bounding box we want to focus on. We

could type the coordinates in manually, but an easier way is with the mouse. The aoi() function

will prompt you to click on the current plot window (make sure you leave it open) twice. The

first click should be the upper left corner of the box, and the second click should be the lower

right corner. We'll save these coordinates in a new variable and then pass that to the plot

function.

> toni.aoi <- aoi()

Click *two* points on the active plotting window that define a box

click on the
corners of the
area of interest

 30 2014-08-17

> plot(toni.lhs.k15, hpp=T, hpp.classify="nsv", col.ramp="rainbow", aoi=toni.aoi)

Looking at the color of the dots tells us that there are a lot of hulls in this area that were revisited

more than 10 times, and if we remember the histogram of revisitation rates we created earlier,

this is certainly a 'hotspot' of revisitation. If we had some GIS data or a satellite image to plot in

the background (see Appendix IV), we could take an educated guess why they come back so

much. We might also learn something if we were to create a scatterplot of revisitation vs. the

hour of day and/or season (which can provide clues if it’s a water point).

Now let's look at the duration of each visit:

 31 2014-08-17

> hist(toni.lhs.k15, metric="mnlv", ivg=3600*12)

> plot(toni.lhs.k15, hpp=T, hpp.classify="mnlv", col.ramp="rainbow")

This is interesting—the hotspot of high revisitation seems to also be a cluster of low duration

visits. This is a telltale signature of watering holes – animals have to come back daily, but stay

there just long enough to fill up because they but don't want to hang around and risk getting

eaten. To fact-check our hypothesis, we should probably zoom into the area and maybe also

repeat the analysis with different values of IVG. The purple dots around the edge of the habitat

 32 2014-08-17

would indicate those are long duration areas, but actually that's an artefact of our choice of

method. Because we used the k-method with k=15, every hull is constructed from 15 nearest

neighors. Furthermore if there are no repeat visits to the area, the hull will consist of 15

temporally contiguous points—a single 'visit' with 15 locations. We would have been better to

use the a-method which results in fewer neighbors in outlying areas.

Lastly, we'll create a scatterplot of the hull revisitation and duration, and use this as a map

legend. Note how we use a spiral color pattern to help us see where the points fall in the

scatterplot, and we've also given the scatter plot a black background to make the colors stand out

more. When we create the hull metric scatterplot, we save it as an object (hsp) and then feed that

object into the plot function for the hull parent points.

> hsp <- lhs.plot.scatter(toni.lhs.k15, x="nsv", y="mnlv", col="spiral",

bg="black")

> plot(toni.lhs.k15, hpp=T, hsp=hsp, hpp.classify="hsp")

The colors on the map separate surprisingly well, in other words the distribution of colors don't

appear random at all. We should probably zoom in to some of the area as we did before to

double-check the amount of variability, but it appears these two dimensions of time-use do a

relatively good job in dividing the landscape in to discrete regions. What other hull metrics might

be useful for classifying the movement of a buffalo? To see a list of all possible metrics, type

hm.expr(). To see a bunch of scatterplots

> lhs.plot.scatter.auto(toni.lhs.k15)

 33 2014-08-17

6. References

Getz, W., S. Fortmann-Roe, et al. (2007). LoCoH: Nonparameteric Kernel Methods for

Constructing Home Ranges and Utilization Distributions. PLoS ONE 2(2): e207.

Getz, W. and C. Wilmers (2004). A local nearest-neighbor convex-hull construction of home

ranges and utilization distributions. Ecography 27: 489.

Lyons, A., Turner, W.C., and WM Getz. 2013. Home range plus: A space-time characterization

of movement over real landscapes. BMC Movement Ecology 1:2, doi:10.1186/2051-3933-1-2.

http://www.movementecologyjournal.com/content/1/1/2
http://dx.doi.org/10.1186/2051-3933-1-2

 34 2014-08-17

Appendix I. Glossary

ancillary variable additional variables that go with each location and/or hull. Ancillary

variables can either be collected by the GPS device (e.g., temperature,

pulse rate) or computed later (e.g., distance to water).

auxiliary parameter a required 'extra' parameter that goes with (and thus defines) a hull

metric. For example, the hull metric 'number of separate visits' (i.e.,

revisitation) requires an auxiliary parameter called 'ivg' (inter-visit gap)

burst A group of sequential locations that are close together in time relative to

the median sampling interval for the entire dataset. A burst can be the

result of hyperactive hardware (i.e., error) or intended by programming

the GPS recorder.

core A concept in behavioral ecology of the primary area used by an

individual. In practice, often taken to be an area that captures 50% of the

observed (or predicted) occurrences.

ffmpeg A cross-platform open source software program that (among other

things) takes a series of still images and converts them to a video

animation

frame A single image in an animation

home range ‘that area traversed by the individual in its normal activities of food

gathering, mating and caring for young. Occasional sallies outside the

area, perhaps exploratory in nature, should not be considered as in part

of the home range.’ Burt (1943, p. 351); in practice the 'home range' is

taken to be an area which encloses 95% of known locations

hsp region A manually digitized (i.e., drawn with the mouse) region of a hull

scatterplot

hull scatterplot A scatterplot of two hull metrics, typically created with the

lhs.scatter() function. In addition to displaying a plot, the

lhs.scatter() function returns an 'hsp' object containing the parameters

for the scatterplot so it can be easily created again. lhs.scatter() also

has options to apply a color pattern (either a spiral pattern or manually

digitized regions). A 'hsp' object created by lhs.scatter() can also be

saved with the Locoh-hullset object (lhs.hsp.add), and can be used as a

legend for map of hull parent points, or (in the case of manually

digitized regions) as a filter.

hull A minimum convex polygon constructed around each location

hullset see locoh-hullset

isopleth level The upper bound of an isopleth, usually expressed as a quantile of points

enclosed. For example an isopleth with isopleth level = 0.95 would

enclose 95% of the locations.

 35 2014-08-17

isopleth A contour line that defines a subset of points based on probability of

occurrence or some other metric

lhs common name given to locoh-hullset objects

locoh-hullset One of the main types of objects used in the T-LoCoH package,

containing one or more sets of hulls and associated hull metrics and

isopleths (page 4)

locoh-xy An object used by the T-LoCoH package, containing locations, time

stamps, nearest neighbor lookup tables, and ancillary variables for one

or more individuals (see page 3).

lxy common name given to locoh-xy objects

MPI Minimum Proportion Inclusion – a principle for selecting the smallest

acceptable value for the k/a/r parameter. The principle says the lower

bound for k/a/r is the value such that p% of all points are included in at

least one hull constructed from at least n points, where p and n are

selected by the analyst in reference to the research question and

characteristics of the data.

MSHC Minimum Spurious Hole Covering – a principle for selecting a value for

the k/a/r parameter. The principle says you should pick a value that is

large enough that the resulting hulls cover up 'spurious holes', which are

holes that are not 'real'.

PNG Portable Network Graphics, a lossless file format for bitmap images

s A parameter used in the TSD equation that determines how much time

influences the TSD 'distance' between two points. When s=0, time plays

no role and TSD is equivalent to Euclidean distance. As s gets large, the

time interval between points dominates spatial distance.

THE True Hole Exclusion – a principle for selecting a value for the k/a/r

parameter. The principle says you should a value that is small enough to

exclude true holes in the movement pattern.

TSD Time Scale Distance. A 'distance' metric or measurement that combines

separation in time with distance in space. TSD for any two points i and j

is given by:

 2max

22

ijijijij tsvyx

where vmax is the maximum observed velocity between any two

consecutive points, and s is a dimensionless scaling parameter provided

by the analyst (s0).

utilization distribution Spatial contours that differentiate a home range area based on the

estimated probability of occurrence (i.e., density of observations)

 36 2014-08-17

Appendix II. Manually Installing the T-LoCoH Package

Hopefully you were able to install the T-LoCoH package using the following R command:

install.packages("tlocoh", dependencies=TRUE, repos=c("http://R-Forge.R-project.org",

"http://cran.cnr.berkeley.edu"))

If that command failed, perhaps because you don't have a good internet connection or there isn't

a build for your machine, you can manually install the package as follows.

1. Install the Dependent Packages

Like most R-packages, T-LoCoH requires a handful of other packages to work. The above

command should install the dependent packages, but you can also install them by pasting in the

following three lines into your R console:

dep.pkg <- c("pbapply", "sp", "FNN", "rgeos", "rgdal", "maptools", "png")

pkgs.not.installed <- dep.pkg[!sapply(dep.pkg, function(p) require(p, character.only=T))]

install.packages(pkgs.not.installed, dependencies=TRUE)

Package gpclib is a special case because a binary version does not exist for either Windows or

Mac. You therefore have to install gpclib from source (see command below). On Windows,

installing packages from source requires first installing RTools
9
.

Mac OS:

if (!require(gpclib)) install.packages("gpclib")

Windows:

if (!require(gpclib)) install.packages("gpclib", type="source")

gpclib is only called upon if the polygon union function in rgeos can't deal with something

(rare). So if you can't get gpclib to install, don't panic, T-LoCoH will still work in most cases.

2. Download the T-LoCoH Package

Download the package from the following website. If you're on Windows, download the

windows binary version (zip file). Mac and Linux users can download the source version (tar.gz

file).

https://r-forge.r-project.org/R/?group_id=1622

After you've downloaded the correct version of the package, do not expand the zip or gz file.

9 http://cran.r-project.org/bin/windows/Rtools/

http://cran.r-project.org/web/packages/gpclib/index.html
https://r-forge.r-project.org/R/?group_id=1622
http://cran.r-project.org/bin/windows/Rtools/

 37 2014-08-17

3. Install the T-LoCoH Package

Windows: Install the package by going to the 'Packages' menu on the R console and

selecting 'Install packages from local zip files'.

Mac: Select ‘Package Installer’, then select ‘Local Source Files’. Click the ‘Install’ button

and pick the file you downloaded.

4. Load T-LoCoH into Memory

Once T-LoCoH is installed, you can load it into memory by typing:

require(tlocoh)

 38 2014-08-17

Appendix III. Importing GPS Data into R

How you get your GPS locations into R depends on how it is stored (e.g., csv files, Excel

spreadsheet, ODBC database). There are many ways to import tabular data into R, too many to

describe here. Suffice to say it is often a pain. For a more user-friendly graphical interface for R

that comes with menu commands for importing data, see the R package Rcmdr.

At the end of the importing process, you should have an R data frame or matrix for the x and y

coordinates. The x and y coordinates of your points are the only two objects that are absolutely

necessary to use T-LoCoH. If your points are time-stamped, as most GPS data is, and you plan to

use the time features of T-LoCoH, then you also need a vector of the same length as your

locations containing the date-time values of each point. This vector can either contain date

formatted strings (see below), or a vector of the R class POSIXct or POSIXlt.

If you have points from multiple individuals that you want to analyze separately, you can either

create separate data frames for each animal (which will become separate locoh-xy objects), or put

them all together in one combined data frame, and make a character vector (or factor) of equal

length containing the names of the individual associated with each point.

Importing Coordinates from a Shapefile

If your locations are saved in a point shapefile, you can import them into R using

the maptools package as follows.

> require(maptools)

> fn <- "C:/GIS/raccoon_pts_2007.shp"

> shp.pts <- readShapePoints(fn, verbose=T)

Shapefile type: Point, (1), # of Shapes: 851

> xys <- coordinates(shp.pts)

> head(xys)

 coords.x1 coords.x2

0 30.16230 -15.08048

1 30.21131 -15.11760

2 30.21768 -15.15861

3 30.21988 -15.18552

4 30.20558 -15.19026

5 30.16669 -15.19447

If there is a field in the attribute table for the time stamps, you can grab those with a

couple more steps:

> names(shp.pts)

 [1] "AREA" "PERIMETER" "PPPOINT_"

 [4] "PPPOINT_ID" "PPPTTYPE" "PPPTTYPETX"

 [7] "PPPTNAME" "DATE" "LONG" "LAT"

> timestamps <- shp.pts$PPTNAME

 39 2014-08-17

Importing Date-Times

Importing date-time values into R can be a painful, but it’s a necessary hurdle if you want to use

the time-enhanced features of T-LoCoH. Due to the variety of ways spreadsheets and databases

save dates and times, you may want to try exporting your date-time as a character field formatted

in a style that R will recognize as a time stamp. To see what a date-time format looks like that R

will be able to convert to a date-time field, type the following command:

> Sys.time()

[1] "2012-01-28 09:02:31 PST"

Your goal is then to format the dates in your spreadsheet or database to match this format, then

export the values as text, after which R should be able to import and convert them successfully.

In MS Access you can use the format() function to format a date field to match the above (i.e., in

a query):

 format(PointDate, "yyyy-mm-dd hh:nn:ss")

In Excel, you can go to Format – Cells and give the date-time cells a custom format:

 yyyy-mm-dd hh:mm:ss

Time Zones

R saves the time zone of time values. If the time zone is omitted when you import your data into

R, R will presume the data is in either the time zone of your computer or UTC (GMT). Many

satellite GPS loggers record the time stamp in GMT, so this is often fine. But you may want to

convert your time values to the local time of the study site, particularly if you're interested in

how the hour of the day may be associated with movement patterns.

Suppose we have a character vector of times called gps.times, that doesn't have a time zone

specified but we know in our heart of hearts that the time values are actually in UTC. Next,

suppose we want to convert these times to local time at the study site so we can see if the hour of

day affects movement, and our study site is in GMT+2. We can convert a character vector of

UTC times to an R object of class POXITct in GMT+2 in the following way:

First, let's view what we have:

> head(gps.times)

[1] "2010-01-25 12:02:46"

[2] "2010-01-25 13:03:10"

[3] "2010-01-25 14:02:40"

[4] "2010-01-25 15:02:46"

[5] "2010-01-25 16:03:03"

[6] "2010-01-25 17:02:36"

The format of the time values looks good because it matches the R format for times, and we note

again that there is no time zone recorded. We'll first convert this character vector into a vector of

POSIXct objects (R's class for time values), explicitly specifying that the time values are in UTC:

 40 2014-08-17

> dt.utc <- as.POSIXct(gps.times, tz = "UTC")

> dt.utc[1]

[1] "2010-01-25 12:02:46 UTC"

Finally, we can convert this POSIXct object into another POSIXct object with a different time

zone. Unfortunately, R doesn't recognize "UTC+2" as a valid time zone name , so first we need

to check the time zone names that are recognized by our specific version of R.

> tzfile <- file.path(R.home("share"), "zoneinfo", "zone.tab")

> tzones <- read.delim(tzfile, row.names = NULL, header = FALSE, col.names =

c("country", "coords", "name", "comments"), as.is = TRUE, fill = TRUE, comment.char

= "#")

> sort(tzones$name)

 [1] "Africa/Abidjan"

 [2] "Africa/Accra"

 [3] "Africa/Addis_Ababa"

 [4] "Africa/Algiers"

That's quite a list, but we can quickly find the time zone name for our study site. With this piece

of information, we finish it off with:

> dt.bw <- as.POSIXct(format(dt.utc, tz = "Africa/Gaborone"), tz="Africa/Gaborone")

> dt.bw[1]

[1] "2010-01-25 14:02:46 CAT"

If all this seems a like a lot of work just to convert time zones, that's because it is. Picking apart

the last function, the 'tz' parameter within the format() function converts the time values in dt.utc

from UTC to Central Africa Time (GMT+2) (i.e., it adds two hours to each time). However

because format() returns a character vector rather than a POSIXct object, the time zone is not

stored. The tz parameter in the outer as.POSIXct() function tells R that these date values are in

Central Africa Time; without this second tz parameter the time zone recorded would default back

to either UTC or the current time zone on your computer. That's when it's appropriate to scream

aaaRRRRggghh! But at least now we can now feed dt.bw into the function that creates an lxy

object and we shouldn't have to worry about it again.

Projecting Coordinates into Real World Units

While T-LoCoH can analyze locations in any coordinate system, it is strongly recommended that

all coordinates be projected into a coordinate system with 'real world' units, such as meters or

feet. Geographic coordinates (longitude-latitude) are not a real world coordinate system, because

degrees are neither meaningful or consistent measures of length or area (i.e., 0.005 degrees will

be a different length on the ground depending if you're at the equator versus Argentina).

Most GIS programs can project coordinates into real world coordinate systems. You can also do

this in R using the sp package. In the next example, we will convert our coordinates into UTM,

which is a common coordinate system. UTM divides the planet into 36 zones based on

 41 2014-08-17

longitude
10

. To transform the coordinates, we need to first create a 'sp' object (a common R class

for spatial data).

> require(sp)

> head(pts.latlong.df)

 x y

1 21.03120 -33.96367

2 21.03638 -33.96733

3 21.04206 -33.96638

4 21.03891 -33.96523

5 21.03483 -33.96283

6 21.03304 -33.95979

> pts.latlong.sp <- SpatialPoints(pts.latlong.df, proj4string=CRS("+proj=longlat

+ellps=WGS84"))

> pts.utm.sp <- spTransform(pts.latlong.sp, CRS("+proj=utm +south +zone=34

+ellps=WGS84"))

> pts.utm.df <- coordinates(pts.utm.sp)

> head(pts.utm.df)

 x y

[1,] 502882.8 6241872

[2,] 503360.7 6241466

[3,] 503885.5 6241571

[4,] 503594.6 6241699

[5,] 503217.4 6241964

[6,] 503052.3 6242302

10 to find out which UTM zone your data fall in, visit http://www.dmap.co.uk/utmworld.htm or plug one of your

coordinates into a geographic/utm coordinate converter such as

http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html

http://www.dmap.co.uk/utmworld.htm
http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html

 42 2014-08-17

Appendix IV. Displaying Spatial Data in the Background

Displaying Shapefiles

The plot and animation functions
11

 in T-LoCoH have the ability to display shapefiles (a common

file format for vector GIS data) in the background. You can specify the symbology attributes,

including fill and border color, plot character, size, and line style.

The first step to making this work is to prepare the GIS data. This includes 1) projecting the data

into the same coordinate system as the movement data, and 2) saving it as shapefiles. Note that

the R functions that read shapefiles can have difficulty if there is a feature with a NULL shape or

other irregularities, so if you run into that problem you may also have to use your GIS software

to delete all records with NULL shapes.

Secondly, you need to tell T-LoCoH what shapefiles to display, and how to display them. There

are two ways to do this: 1) creating a csv file with symbology info, or 2) passing a list.

Option 1. Create a csv file

The first option is to create a csv file (comma separated value) with columns containing the

required information to display shapefiles. This option works well if you'll be plotting the same

base layers often, because once the csv file is set up you can specify which layers to include by

simply providing their assigned names, like 'roads' or 'vegetation'. The csv file should have the

following columns:

Column heading Contents

layer layer name

fn shape file name (either absolute, relative to the working directory, or

relative to the folder where the csv file resides)

type layer type: polygon, line, or point

lty line type (for line features only): 0=blank, 1=solid, 2=dashed,

3=dotted, 4=dotdash, 5=longdash, 6=twodash

pch plot character number (for point features only), see

http://rgraphics.limnology.wisc.edu/images/miscellaneous/pch.png

cex size of plot character (used for point layers only)

lwd line width (used for line layers only)

border border color (polygons only), TIP: to hide the border set to NA

color color of the object

csv files are plain text and can be edited either with a text editor like notepad or a spreadsheet

program like Excel. To see an example of a csv file with the above columns, you can copy the

kruger_gis.csv sample file that comes with T-LoCoH, which you can locate by typing:

> system.file("shps", "kruger_gis.csv", package="tlocoh")

[1] "C:/Program Files/R/R-2.15.0/library/tlocoh/shps/kruger_gis.csv"

Once you have a) prepared your GIS data and b) created a csv file with the symbology

parameters, you can add GIS layers to your plots by passing 1) the shp.csv parameter to tell

11 including plot.locoh.lxy(), plot.locoh.lhs(), lhs.exp.mov(), and lxy.exp.mov()

http://rgraphics.limnology.wisc.edu/images/miscellaneous/pch.png

 43 2014-08-17

T-LoCoH where the csv file is, and 2) the layers parameter to specify the names of the layers to

display.

> plot(lxy, shp.csv="yosemite_gis.csv", layers=c("roads", "water"))

Option 2. Pass a list object

If you don't want to take the trouble to create a csv file, you can tell T-LoCoH which shapefiles

to display in the background by setting the layers parameter to a specially formatted list object.

In this case, layers should be a list with one element for each layer to be displayed, with each

element equal to list with named elements matching the columns of the csv file (above).

> layers.lst <- list(roads=list(layer="roads", fn="c:/gis/roads.shp", type="line",

pch=0, lty=2, lwd=1, col="#8B4513CC"))

> plot(lxy, layers=layers.lst)

Displaying TIFF Files

The functions for plotting and creating animations of locoh-hullsets and locoh-xy objects have

parameters which allow you to display a raster image (such as a satellite image) in the

background. To use these parameters, you must prepare the image(s) as follows:

 The pixel values in the image must be 'prestretched' for display. Quite often, the pixel

values in a remotely sensed image have a very narrow range and must be stretched to

avoid appearing very dark and/or with very little contrast. GIS programs will often stretch

the pixel values automatically so they look better on the screen. T-LoCoH doesn't support

on-the-fly contrast stretching, so you must save the image with the pixel values already

stretched (this is an option in many remote sensing packages, you can also do it in R).

 The image must be in the same projection system as the other spatial data being plotted

including the locations.

 The image should be saved as a GeoTIFF (*.tiff) or another raster format that can be read

by the RGdal package
12

.

After your image is prepared, the parameters to display the image are as follows:

Parameter Purpose
tiff.fn Filename of the image
tiff.bands tiff.bands is a vector with exactly one or exactly three integers that

correspond to the bands in the image
13

. In the case of a multi-band image,

these numbers define which bands will be displayed using the red, green, and

blue color guns respectively. In a Landsat TM image, for example, the first

four bands are blue, green, red, and infrared. To display a TM GeoTIFF

image as 'natural colors', you would set tiff.bands=c(3,2,1).

12 for a complete list of supported raster formats, run gdalDrivers()
13 even though the argument name is 'tiff.bands', this argument is used for all images including those that are not

saved as tiff

 44 2014-08-17

To display a single band from a multi-band image, pass a single value for

tiff.bands. You can also let tiff.fn be a single-band image (in which case

tiff.bands will be ignored). See also tiff.col.
tiff.col When displaying a single band image, tiff.col should be the color values

used to display the image. If the single-band image contains five land cover

categories, for example, you could set tiff.col= rainbow(5). If the single-

band image contains continuous elevation values (i.e., a DEM), you could

display them with 256 shades of gray with tiff.col=gray(0:255/255) or

perhaps topographic colors with topo.colors(255) or terrain.colors(n).

tiff.col is ignored if displaying three bands from a multi-band image (see

tiff.bands).
tiff.pct When tiff.pct=T, the script will create a indexed 256-color version of the

image, which may result in quicker drawing time particularly if several plots

are being drawn
tiff.buff tiff.buff can be used to expand the range of values on the x and y axis so

that you see a bit of the background image beyond the extent of the points.

This is a value in map units, so for example if your image is in UTM (meters)

and tiff.buff=500, the plot would 'zoom out' so you see the area containing

the locations plus a 500m buffer.
tiff.fill.plot Fill the plot area (all the way to the axes). TRUE | FALSE

 45 2014-08-17

Appendix V. T-LoCoH Functions

locoh-xy Functions

Function Description

Create a locoh-xy object

xyt.lxy Create a lxy object

move.lxy Convert a Move object from the move
14

 package to a lxy object

Manipulate and Manage locoh-xy objects

summary View a summary of an lxy object

lxy.save Save a lxy object to disk using an intelligent file name

lxy.repair Repair a lxy object

lxy.merge Merge two lxy objects together

lxy.subset Create a new lxy object containing a subset of points

lxy.id.new Assign new id value(s)

lxy.anv.add Add an ancillary variable

lxy.proj.add Add projection information

lxy.reproject Reproject locations

lxy.gridanv.add Add ancillary values from one or more rasters

Clean and Thin Data

lxy.thin.bursts Thin out short-timed 'bursts' of points which were an artifact of the

recording hardware

lxy.thin.byfreq Selectively remove points to achieve a common time period and/or

sampling frequency for a lxy object containing the locations for multiple

individuals.

Selecting Space-Time Balance

lxy.ptsh.add

lxy.plot.ptsh

lxy.plot.sfinder Plot the values of s which equalize the spatial and temporal terms in TSD

lxy.plot.tspan Plot the distribution of the time span of nearest neighbors for different

values of s

lxy.plot.mtdr Plot distribution of the ratio the maximum theoretical distance ratio for

nearest neighbors

Identify Nearest Neighbors

lxy.amin.add Compute a value that ensures all points have enough neighbors

lxy.nn.add Identify nearest neighbors

Plotting functions

plot Plot an lxy object

hist Create histograms of the properties of a lxy object, including step length,

speed, and sampling interval

lxy.plot.freq Plot the number of observations and/or sampling interval over time

lxy.plot.pt2ctr Plot the distance of each point to the centroid to help find the periodicity of

'natural' cycles in the data

14 http://cran.r-project.org/web/packages/move/

http://cran.r-project.org/web/packages/move/

 46 2014-08-17

Function Description

Export locoh-xy objects

lxy.exp.csv Export a lxy object to a csv file

lxy.exp.mov Prepare frames for animation; create QuickTime video (or other video

formats with a different encoder tools)

lxy.exp.kml Export locations and time stamps to kml for animation in Google Earth

lxy.exp.shp Export to shapefile format

locoh-hullset Functions

Function Description

Creating Hullsets

lxy.lhs Create a lhs object from a lxy object

lxy.lhs.wiz lhs creation wizard

Manipulating Hullsets

summary View a summary of a lhs object

lhs.save Save a lhs object to disk using an intelligent filename

lhs.select Take of subset of hullsets

lhs.merge Merge hullsets together

lxy.anv.add.R Add an ancillary variable

lhs.anv.del Delete ancillary variable(s)

Plotting

plot Plot hulls, hull parent points, isopleths, and/or ellipses

Hull Metrics

hm.expr View all possible hull metrics

lhs.visit.add Compute hull metrics for revisitation and duration

lhs.ellipses.add Compute bounding ellipses

lhs.revisit.add Compute interval-specific revisitation metrics

lhs.revisit.del Delete interval-specific revisitation metrics

Isopleths

lhs.iso.add Create isopleths

lhs.iso.del Delete saved isopleths

lhs.iso.rast Convert isopleths to raster

Hull Metrics – Plots

hist View a histogram of hull metrics

lhs.plot.scatter Create a scatterplot of two hull metrics

lhs.plot.scatter.auto Create scatterplots for a whole bunch of pairs of hull metrics

lhs.plot.isoarea Plot the area of each isopleth for each value of the k/a parameter

lhs.plot.isoear Plot the edge:area ratio of each isopleth for each value of the k/a parameter

lhs.mf.plot Multi-frame plot

lhs.hsp.add Save a hull scatterplot in the lhs

lhs.plot.revisit Plot revisitation

lhs.hsp.del Delete a saved hull scatterplot

 47 2014-08-17

Function Description

Exporting

lhs.exp.shp Export hulls, hull parent points, and/or isopleths as shapefiles

lhs.exp.mov Create a Quicktime animation from a LoCoH-hullset object

lhs.exp.csv Export hull metrics as a CSV file

hulls Extract hulls as a list of SpatialPolygonsDataFrame objects

isopleths Extract isopleths as a list of SpatialPolygonsDataFrame objects

Filtering

lhs.filter.anv Create subsets of hulls based on an ancillary variable

lhs.filter.hsp Create subsets of hulls based on manually defined regions in a hull metric

scatterplot space

Association Analysis

lhs.so.add.R Add metric(s) for temporally overlapping hulls

lhs.to.add.R Add metric(s) for spatially overlapping hulls

lhs.pep.add Compute a hull metric for proportion of enclosed points

Other

lhs.dr.add Identify directional routes, which are segments between temporally

contiguous points whose hulls are also highly elongated

Large datasets functions*

Function Description

Large Datasets

lxy.lhs.batch Create separate lhs objects saving each one to disk as a separate file (for

large datasets)

lhs.exp.isodata Extract and compile isopleth attributes from multiple hullsets saved to disk

isodata.plot Plot dataframe compiled by lhs.exp.isodata

*to help deal with the memory limits of R

 48 2014-08-17

Appendix VI. Creating an Animation

Animations can be a good way to see patterns in the data, including cycles, synchronicity,

foraging vs. searching behavior, etc. This obviously requires that your data have time stamps

saved.

Animating with Google Earth

T-LoCoH has two functions that can be used to visualize movement data through an animation.

For a quick animation using Google Earth, run lxy.exp.kml(). This will export a locoh-xy

object as a kml file which you can then animate using Google Earth. When you open the kml (or

kmz file if compression was turned on) in Google Earth, the animation toolbar should appear.

Adjust the time span of the display by moving the time start marker, then click the Play button.

Options in the xy.exp.kml include setting the color and opacity of the path (or hiding it

completely), setting the color of the place mark symbols, and exporting everything n
th

 point.

Creating an Animation File

Alternately, the lxy.exp.mov()function can export a

locoh-xy object as an animation file (Quicktime or MP4).

The way T-LoCoH does this is to create each frame

one-by-one, save them to disk as temporary PNG files,

launch an encoding program that converts the frames into an

animation, and then delete the temporary PNG files.

T-LoCoH uses a great little open-source video encoder

called ffmpeg, which among other things can take a series of

New in T-LoCoH version 1.17
You can now export an animation to
MP4 format (using the h.264 codec).
The option gives excellent quality
and is somewhat easier to embed
online or in presentations. To export

to mp4, set fmt="mp4"

 49 2014-08-17

still images and convert them into an animation. This means you have to download
15

 and install

the version of ffmpeg appropriate for your operating system before you can create animations in

T-LoCoH. On Windows, ffmpeg is a single executable file (ffmpeg.exe) that you should save

either in the R working directory or a directory on the system path environment variable (e.g.,

c:\windows)
16

. If you can't install ffmpeg, or you prefer to use a different encoder, you can also

use T-LoCoH to create the individual frames and encode them using a different application (e.g.,

Quicktime Pro)
17

.

The function that exports locoh-xy objects as animations is lxy.exp.mov(). There are generally

three steps in the animation workflow; we will use lxy.exp.mov() for all three steps, telling it

what to do by changing the parameters.

1. Design the frames

2. Select the encoding parameter: frame rate, duration, and/or skip factor

3. Create the frames and encode the video

The first task in creating an animation is to design the frame. This includes picking the frame

size, deciding whether any GIS layers or images should be displayed in the background, whether

a label for the date stamp should be displayed (and if so where), whether the frame should have a

title, axes, etc.

To help us design the frame, let's first run lxy.exp.mov() with the default parameters setting

screen.test=TRUE (so it won't create PNG files) and max.frames=1.

> lxy.exp.mov(toni.lxy, screen.test=TRUE, max.frames=1)

15 http://ffmpeg.org/download.html
16 alternately you can specify the full path to ffmpeg.exe with the ffmpeg argument in lxy.exp.mov()
17 to create frames as a series of still images for encoding later, set the tmp.dir argument to a directory of your

choice, create.mov=FALSE, and tmp.files.delete=FALSE

http://ffmpeg.org/download.html

 50 2014-08-17

This isn't bad. The little red dot is the location in the current frame and the little gray dots are all

the other locations
18

. If we wanted to hide the little date bar at the bottom, we could set

date.bar=0, but this is a pretty long dataset so we'll keep it.

Next, let's add some GIS layers to help give some reference. T-LoCoH can display GIS data in

shapefile format (see Appendix IV. Displaying Spatial Data in the Background , page 42). The

T-LoCoH package comes with a few layers for the part of Kruger National Park where our

buffalo Toni was collared, including the park boundary, watering troughs, and the main road. To

add these layers, we need to add the shp.csv parameter to specify the location of a CSV file that

contains the symbology properties for each layer (we'll use the csv file that comes with the

package), as well as the layers parameter to specify the name(s) of layer(s) we want displayed

(for more information, see page 42). We'll also set crop.layers.to.extent=FALSE, which can

speed up the frame creation but is not needed.

> lxy.exp.mov(toni.lxy, screen.test=TRUE, max.frames=1, shp.csv="kruger_gis.csv",

layers="roads,troughs,boundary", crop.layers.to.extent=FALSE)

18 if we didn't like the gray dots we could hide them by setting col.xys.background=NA

 51 2014-08-17

Now we see the water troughs as little blue

triangles, the road as a dotted brown line, and

the park boundary as a red line. If we wanted

to adjust the appearance of these features we

could edit the kruger_gis.csv file (see page 42).

New in T-LoCoH v1.17

You can also display raster images in

the background of an animation. See

page 42 or the help page for

lxy.exp.mov on how to set tiff.fn,
tiff.bands, tiff.col, tiff.buff,

and tiff.fill.plot

Next, let's get rid of the title 'toni' title at the

top of the frame by setting title.show=FALSE

parameter (we'll make it part of the caption).

And let's also move the date label to the lower

right corner by specifying values for

dt.label.x and dt.label.y parameters.

> lxy.exp.mov(toni.lxy, screen.test=TRUE, max.frames=1, shp.csv="kruger_gis.csv",

layers="roads,troughs,boundary", crop.layers.to.extent=F, dt.label.x=387000,

dt.label.y=7306000, title.show=FALSE)

Tip: A trick for getting the coordinates from the current plot window

(for the label placement) is to use R's locator() function. This

function will prompt you to click on the plot window then show you

the coordinates where you clicked. Pass it a '1' to tell it that you only

need one point.

> locator(1)

 52 2014-08-17

That's better. We can change the background

color of the date label with the dt.label.bg

argument. A background color is particularly

useful if we are displaying an image in the

background.

We're almost ready to generate the animation.

What we've done so far is to create a sample

frame in a plot window. The next step is to

create a few sample frames as PNG images

files, and if those are ok then we can do the

final step which is to produce all of the

frames and encode them into a video. To

indicate that we want to make PNG files

instead of a plot window, we omit the

screen.test parameter, tell it to make 5

frames, and pass the name of a directory in

the tmp.dir parameter. We want to inspect

these PNG files after they've been created, so

we'll specify "tmp" as the directory which

will be created in the working folder.

Normally the script will delete the PNG files

when done, so we need to tell it not to delete

them using the tmp.files.delete parameter.

 53 2014-08-17

Other Parameters You Can Use to Customize Your Animation

To see descriptions for all the parameters you can adjust to customize your animation,

type ?lxy.exp.mov. Below is a list of most of the parameters grouped by what they do:

 Animate multiple individuals simultaneously: all.ids.at.once,
all.ids.col.unique, all.ids.col, all.ids.legend, all.ids.legend.cex

 Colors: col.xys.active, col.xys.background, cex.xys.active,
cex.xys.background, col.by.hour.of.day, col.hod

 Time parameters: dt.start, dt.end, frame.method, frame.rtd

 Map extent: xlim, ylim (see also tiff.buff)

 Date label: dt.label, dt.label.col, dt.label.bg, dt.label.x, dt.label.y,
tz.local.check, tz.local

 Date bar: date.bar, date.bar.bins, col.db, cex.axis.db

 Title: title, title.show

 Axes: axes.show, axes.ticks, axes.titles

 Display GIS layers: shp.csv, layers

 Display images: tiff.fn, tiff.bands, tiff.col, tiff.buff, tiff.fill.plot

 Speed-up drawing of background elements: bg2png, crop.layers.to.extent,
tiff.pct

 Frame and font size: width, height, png.pointsize

 Margins: mar.map, mgp.map

 Frame generation: max.frames, screen.test, tmp.dir, tmp.files.delete

 Animation settings: duration, fps, skip, ffmpeg, create.mov,
prompt.continue, beep

 Output file: fn.mov, fn.mov.dir, fn.mov.exists

We also need to think about the pixel size of each frame. Our frame is taller than wider, so let's

specify a moderate width of 480 pixels and allow R to pick the height as needed. Finally, to

create animation we need to set two of the following three parameters: duration (in seconds), fps

(frames per second), and skip (display every nth frame). We'll fine-tune these in the next step,

but for now we'll tentatively tell it to encode at 10 frames per second and set skip=1 (i.e., show

every frame). Finally, because we're not quite ready to encode the video, we'll set

create.mov=FALSE. After the PNG file(s) have been saved to disk (in a directory specified by the

tmp.dir parameter), let's preview them using an image viewer.

 54 2014-08-17

> lxy.exp.mov(toni.lxy, max.frames=5, shp.csv="kruger_gis.csv",

layers="roads,troughs,boundary", crop.layers.to.extent=F, dt.label.x=387000,

dt.label.y=7306000, title.show=F, tmp.dir="tmp", tmp.files.delete=FALSE, width=480,

fps=10, skip=1, create.mov=FALSE)

Ready to generate animation

 Num frames=5. Duration=0.5secs. fps=10. Skip=1. Frame size: 480x592

 Temp folder: tmp

 Delete temp files: FALSE

 Record background as PNG: TRUE

 Mov file: <skipped>

Continue? y/n y

 Creating frames...

Use an image viewer to look at the PNG files it created. Presuming we're happy with the design

of the frames, we next need to select parameter values for the temporal extent of each frame.

Each frame can represent a single location, or a fixed interval of time. With the single location

option, each frame will show the next point in the series, regardless of its time. If each frame

represents a fixed interval of time, then some frames may have no location displayed if there

were no points collected during that time interval (i.e., a data gap). Alternately, some frames

could have more than one location. The default is to create location-based frames for a single

individual, and time-based frames when animating multiple individuals simultaneously. We

already checked above that our movement data for toni has very few gaps, so we will stick with

the default for a single individual (location-based frames). If we wanted to be purist and switch

the time-based frames, we would set frame.method="time".

The last thing is to fine-tune the frame rate and skip factor. We'll take out the max.frames

parameter so it will compute the duration for all frames, but we'll keep create.mov=FALSE

because we're still not quite ready to actually launch the encoder. We'll also remove the tmp.dir

and the tmp.files.delete parameter, so it will use the default settings which is to create the

frames in a temp folder that we don't need to be concerned about and delete them when done.

> lxy.exp.mov(toni.lxy, shp.csv="kruger_gis.csv", layers="roads,troughs,boundary",

crop.layers.to.extent=F, dt.label.x=387000, dt.label.y=7306000, title.show=F,

width=480, fps=10, skip=1, create.mov=FALSE)

Ready to generate animation

 Num frames=5775. Duration=577.5secs. fps=10. Skip=1. Frame size: 480x592

 Temp folder: C:\Users\Andy\AppData\Local\Temp\RtmpsVP043

 Delete temp files: TRUE

 Record background as PNG: TRUE

 Mov file: <skipped>

Continue? y/n

The output tells us that if we use a skip factor of 1 (all frames included) and a frame rate of 10

fps, the resulting animation will be 577 seconds, which is almost 10 minutes. That might be ok,

but if we want to reduce that down to 2-3 minutes, which is the average attention span of a

graduate student at a lab meeting, we can adjust the frame rate and/or skip factor. Since the

sampling interval for this animal is 1 hour, we could set skip=2 (show every other frame) which

would cut the total duration in half and we probably wouldn't miss too much (depending on what

the animation was for). We could also speed it up by setting fps=20 (frames per second), which

should reduce the duration in half again. Let's see what those changes give us.

 55 2014-08-17

> lxy.exp.mov(toni.lxy, shp.csv="kruger_gis.csv", layers="roads,troughs,boundary",

crop.layers.to.extent=F, dt.label.x=387000, dt.label.y=7306000, title.show=F,

width=480, fps=20, skip=2, create.mov=FALSE)

Ready to generate animation

 Num frames=2888. Duration=144.4secs. fps=20. Skip=2. Frame size: 480x592

 Temp folder: C:\Users\Andy\AppData\Local\Temp\RtmpsVP043

 Delete temp files: TRUE

 Record background as PNG: TRUE

 Mov file: <skipped>

Continue? y/n n

This looks acceptable. So we run the function one last time and change create.mov=TRUE. (If we

wanted to do a test-run we could run it with max.frames=100).

lxy.exp.mov(toni.lxy, shp.csv="kruger_gis.csv", layers="roads,troughs,boundary",

crop.layers.to.extent=F, dt.label.x=387000, dt.label.y=7306000, title.show=F,

width=480, fps=20, skip=2, create.mov=TRUE)

Ready to generate animation

 Num frames=2888. Duration=144.4secs. fps=20. Skip=2. Frame size: 480x592

 Temp folder: C:\Users\Andy\AppData\Local\Temp\RtmpsVP043

 Delete temp files: TRUE

 Record background as PNG: TRUE

 Mov file: c:/locoh/toni.2005-08-23.2006.04.23.n2888.480x592.mov

Continue? y/n y

After about 25 minutes or so (most of which is spent creating

the individual frames), you should have a Quicktime file
19

. Note

we didn't specify a file name for the mov file—we could have

specified a file name using the fn.mov parameter, but the script

picks a file name which although a bit verbose tells you a lot

about the content of the animation: the name of the animal(s),

dates, number of frames, and frame size.

The default settings for the encoder use Quicktime's animation

codec, which is a lossless compression method that also 'scrubs'

really well, meaning you can drag the time indicator forward

and backward in time without a lag in the screen refresh.

Exporting as MP4 (fmt="mp4") also produces good quality and

is easier to embed in PowerPoint (especially on Windows) or a

webpage

Play the video – what do you see? Does Toni seem to have

favorite patches of vegetation she returns to? Do the waterholes

seem to influence her movement? Does there seem to be any

difference in movement pattern during the dry winter

(April – October) versus the wet summer (November – March)?

19 download the final animation at

http://tlocoh.r-forge.r-project.org/toni.2005-08-23.2006.04.23.n2888.480x592.mov

http://tlocoh.r-forge.r-project.org/toni.2005-08-23.2006.04.23.n2888.480x592.mov

