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Abstract

Marketing Engineering is important for analysis and decision making in the context of
Marketing. The R package˜tme provides tools for marketing engineering. It’s purpose is
mainly for teaching.

1 Introduction

This manual is divided into several chapters. In each chapter, one field of marketing engineering
is going to be described.

2 Market Response Models

Marketing response models in their simple form try to describe the relationship between advertising
effort and sales. There are many different types of response models. They differ not only in their
shape but also in other dimensions like linearity vs. nonlinearity, certainty vs. uncertainty, or
determinstic vs. stochastic and so forth. In the following section a brief survey of the available
models in our package will be presented.

2.1 Theory

Implemented Response Models (see Lilien, Kotler, and Moorthy (1992)):

Linear Q = a + bX, b > 0

Power Series Q = a + bX + cX2 + . . .

2.2 Examples
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> x <- c(1:1000)

> par(mfrow=c(2,2))

> plot(x,response(x,c(5,0.004),model="exponential"),xlab="advertising effort",ylab="sales",type="l",main="Exponential Model")

> plot(x,response(x,c(800,0.004,100),model="modexp"),xlab="advertising effort",ylab="sales",type="l",main="Modified Exponential Model")

> plot(x,response(x,c(800,-1,0.005, 100),model="logistic"),xlab="advertising effort",ylab="sales",type="l",main="Logistic Model")

> plot(x,response(x,c(900,100,2,50000),model="adbudg"),xlab="advertising effort",ylab="sales",type="l",main="ADBUDG")

>
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Figure 1: A sample of response models.
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3 New Product Decisions

3.1 Theory

3.2 Computational Infrastructure

3.3 Examples
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4 Salesforce and Channel Decision

4.1 Theory

Selling is one of the most important elements in the marketing mix. Many people in a company
are engaged in sales and related activities. So firms should manage their salesforce appropriately.
Furthermore salesforce sizing and allocation are fundamental issues in this context. Fortunately,
there exist many models to support decision making in this area. Some of this models are going
to be presented in this chapter.

4.1.1 Linear Sum Assignment Problem

The assignment problem is famous in both combinatorial optimization and linear programming.
In a Linear Sum Assignment Problem a matrix C = (cij) is given and we want to find a solution
in which each row matches a column in such a way that the sum of the corresponding entries is
minimized. The matrix C in the LSAP represents the costs. In the marketing sense we want to
maximize our profit. Therefore we have to find the correspondig columns to each row, so that the
sum is a maximum.

For more details regarding the Implementation see clue.

4.1.2 Salesforce Allocation

The best way of setting salesforce size is to increase selling effort in each control unit until the
marginal cost of increasing selling effort is equal to the marginal return from increased sales
(Beswick (1977)). It is clear that this ideal situation is not often met in practice since there are
restrictions one has to face. For example there are budget restrictions. This Problem can be
formulated as follows:

Maximize Profits = Sp−Nv − F, (1)

subject to Nv ≤ L, (N an integer) (2)

S ≤ L2 (3)

For a given Salesforce N , maximizing profits (1) is equivalent to maximizing total sales:

S =

n∑
i=1

ri (4)

where ri is the response to the selling effort in control unit i. The Algorithm works as follows

Step 1 maximize (4) and check if the constraints (2) and (3) are satisfied.

Step 2 If constraints are satisified and profits (1) have increased, add 1 to N and repeat step 2.
When either of this two conditions is violated return to the previous step and stop.

The response function (ri) should be a function which describes sales response to selling effort
as a function of performance indicators (potential, workload, company effort and experience). Or
it can be a subjective estimate of the response (considering these differnces).

Beswick (1977) use a response function of the following form:

ri = zit
a
i + Ci (5)
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where ri respectively zi can be estimated with non-linear regression. ti is the time a salesman
spends in area i (which is to be calculated). The following function was found to give good results:

zi = 0.3258(wi/w̄)0.172(ci/c̄)
0.646p0.694i (mi/m̄)0.105 (6)

Ci = 0

a = 0.217

4.1.3 Planning Sales Calls

Companies with a large salesforce can by improving efficiency and effectiveness of managing sales
calls increase their profits. Lodish (1971))˜proposed to use an interactive salesman’s call planning
system called CALLPLAN to aid salesman or salesmanagement in allocating sales call time more
efficiently. The aim is to maximize the returns from their calls. The model is based on the
assumption that the expected sales to each client (or prospect) is a function of the average number
of calls per effort period during a response period (which should be long enough to accomodate
carryover effects from each effort period)

CALLPLAN depends on the formulation of a response function (ie. ADBUDG, for details see
chapter 2)

The mathematical formulation of this problem can be stated as follows:
Find the set of xi to maximize profits z

z =

I∑
i=i

airi(xi)− e

J∑
j=1

NTjcj (7)

There are some constraints which have to be hold:

• The amount of time spent on selling and travelling must be less then the amount of time
available during an average effort period.

I∑
i=i

tixi +

J∑
j=1

NTjuj ≤ T (8)

• The number of trips to an area is a function of the number of calls made to each account in
the area.

NTj = Max {xi such that gi = j} for j = 1, . . . , J (9)

• Furthermore the number of calls in and effort period must lie within the stated bounds.

Mini ≤ xi ≤Maxi for i = 1, . . . , I (10)

4.2 Computational Infrastructure

Function solveAP calculates the assignments and the maximum of a given assignment problem.
It takes a nxn matrix as an argument.

Function beswick() takes a vector of performance indicators for the control units and certain
parameters like the budget restriction or the maximum sale one can achieve. Furthermore you can
set a verbose flag.

Function performanceIndicators() calculates the performance indicator for each control
unit. See equation (6) for details.

There is a method for coef. This method returns the selling effort one should give to each
control unit.
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4.3 Examples

• Linear Sum Assignemt Problem

> ## Linear Sum Assignment Problem

>

> data("ap")

> ap

OE WD PR

A 100 90 80

B 92 92 85

C 102 95 75

> solveAP(ap)

Optimal Assignment with maximum of 280 :

A => OE, B => PR, C => WD

• Allocating Selling Effort

> ## Allocating Selling Effort via Dynamic Programming

>

> ## some performance indicators

> g <- c(75.36, 28.76, 36.21, 43.28, 56.65, 69.27, 63.04)

> names(g) <- LETTERS[seq(g)]

> bm <- beswick(g)

> bm

maximized profit: 184.564287933158

salesforce size: 10

> coef(bm)

B C D E G F

0.06520882 0.08696728 0.10868742 0.15216687 0.17391638 0.19565985

A

0.21739339

> ## you can do nonlinear regression or you calculate the

> ## performance for each control unit as follows

>

> ## workload for each area i

> w <- c(20,25,14,38)

> ## prior company experience (market share)

> c <- c(0.35,0.3,0.12,0.32)

> ## potential sales in area i

> p <- c(100,150,130,120)

> ## regional managers experience (time with the company)

> m <- c(1.5,3,2.5,4)

> I <- performanceIndicators(w,c,p,m)

> besw <- beswick(I)

> besw

maximized profit: 54.4320243402315

salesforce size: 10
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• Callplan

> ## CALLPLAN

> data("callplan")

> CPEX

Calls Hours Sales Margin none -50 +50 saturation

north 4 2 60 0.4 0.2 0.62 1.30 1.5

south 4 2 50 0.3 0.3 0.70 1.15 1.4

> cpm <- as.callplan(CPEX)

> cpm

A callplan for 2 territories

> ## current plan

> x <- do.call(eval.callplan,c(list(cpm$e), r=2, cpm,

+ details=TRUE))

> x

$profit

[1] 39

$slack

[1] 0

$effort

north south

4 4

$sales

north.b south.b

60 50

> ## optimize plan with gom

> gcp <- gom(eval.callplan, evalArgs=c(r=2, cpm), evalVector=TRUE,

+ bounds=data.frame(Lower=rep(0,length(cpm$h)),

+ Upper=rep(8,length(cpm$h)),

+ row.names=names(cpm$p)),

+ numVar=1:2, intVar=1:2, trace=TRUE)

0 39

1

2 40.90114

3

4 41.05269

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

> xx <- do.call(eval.callplan,c(list(gcp$bestVar), r=2, cpm, details=TRUE))

> xx

$profit

[1] 41.05269

$slack

[1] 0
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$effort

north south

5 3

$sales

north.b south.b

69.82283 43.74520
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> ## some plots

> op <- par(mfrow = c(1,2), pty="s")

> barplot(cpm$e, ylab="Calls",

+ main=paste("Current:",formatC(x$profit,digits=3)))

> barplot(gcp$bestVar, ylab="Calls",

+ main=paste("Recommended:",formatC(gcp$bestFit,digits=3)))

> par(op)

>
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Figure 2: Optimizing Callplan
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