
Object tracking in R

Tony Plate

January 17, 2011

1 Introduction

The track package sets up a link between R objects in memory and files on
disk so that objects are automatically saved to files when they are changed. R
objects in files are read in on demand and do not consume memory prior to
being referenced. The track package also tracks times when objects are created
and modified, and caches some basic characteristics of objects to allow for fast
summaries of objects.

Each object is stored in a separate RData file using the standard format
as used by save(), so that objects can be manually picked out of or added to
the track database if needed. The track database is a directory usually named
rdatadir that contains a RData file for each object and several housekeeping
files that are either plain text or RData files.

Tracking works by replacing a tracked variable by an activeBinding, which
when accessed looks up information in an associated ’tracking environment’ and
reads or writes the corresponding RData file and/or gets or assigns the variable
in the tracking environment. In the default mode of operation, R variables that
are accessed are stored in memory for the duration of the top level task (i.e., in
one expression evaluated from the prompt.) A callback that is called each time
a top-level-task completes does three major things:

� detects newly created or deleted variables, and adds or removes from the
tracking database as appropriate, and

� writes changed variables to the database, and

� deletes cached objects from memory.

With the track package, R provides a similar user experience to the old
S-PLUS in terms of how it stores variables – new and changed objects are
immediately saved to disk.

1.1 How to use the track package

> library(track)

> track.start()

1



Tracking <env R_GlobalEnv> (writable) using existing directory 'rdatadir'

> track.stop()

Stopping tracking on <env R_GlobalEnv>

2 An example of tracking

Here is a brief example of tracking some variables in the global environment:

> library(track)

> track.start()

Tracking <env R_GlobalEnv> (writable) using existing directory 'rdatadir'

> x <- 123

> y <- matrix(1:6, ncol = 2)

> z1 <- list("a", "b", "c")

> z2 <- Sys.time()

> track.summary()

class mode extent length size modified TA TW

x numeric numeric [1] 1 48 2011-01-17 23:18:34 0 10

y matrix numeric [3x2] 6 232 2011-01-17 23:18:34 0 10

z1 list list [[3]] 3 360 2011-01-17 23:18:34 0 10

z2 POSIXct,POSIXt numeric [1] 1 312 2011-01-17 23:18:34 0 10

> ls(all = TRUE)

[1] ".Last" ".trackingEnv" "x" "y" "z1" "z2"

> track.stop()

Stopping tracking on <env R_GlobalEnv>

> ls(all = TRUE)

character(0)

> track.start()

Tracking <env R_GlobalEnv> (writable) using existing directory 'rdatadir'

> ls(all = TRUE)

[1] ".Last" ".trackingEnv" "x" "y" "z1" "z2"

> track.summary()

2



class mode extent length size modified TA TW

x numeric numeric [1] 1 48 2011-01-17 23:18:34 0 10

y matrix numeric [3x2] 6 232 2011-01-17 23:18:34 0 10

z1 list list [[3]] 3 360 2011-01-17 23:18:34 0 10

z2 POSIXct,POSIXt numeric [1] 1 312 2011-01-17 23:18:34 0 10

> track.stop()

Stopping tracking on <env R_GlobalEnv>

> list.files("rdatadir", all = TRUE)

[1] "." ".." ".trackingSummary.rda" "_1.rda"

[5] "filemap.txt" "x.rda" "y.rda" "z1.rda"

[9] "z2.rda"

There are several points to note:

� The global environment is the default environment for tracking – it is
possible to track variables in other environments, but that environment
must be supplied as an argument to the track functions.

� By default, newly created or deleted variables are automatically added to
or removed from the tracking database. This feature can be disabled by
supplying auto=FALSE to track.start(), or by calling track.auto(FALSE).

� When tracking is stopped, all tracked variables are saved on disk and will
be no longer accessible until tracking is started again.

� The objects are stored each in their own file in the tracking dir, in the
format used by save()/load() (RData files).

3 Why use the track package

There are four main reasons to use the track package:

� conveniently handle many moderately-large objects that would collectively
exhaust memory or be inconvenient to manage in files by manually using
save(), load(), and/or save.image().

� have changed or newly created objects saved automatically at the end of
each top-level command, which ensures objects are preserved in the event
of accidental or abnormal termination of the R session, and which also
makes startup and saving much faster when many large objects in the
global environment must be loaded or saved.

� keep track of creation and modification times on objects

� get fast summaries of basic characteristics of objects - class, size, dimen-
sion, etc.

3



4 Incremental history

The track package also provides a self-contained incremental history saving func-
tion that writes the most recent command to the file .Rincr_history at the end
of each top-level task, along with a time stamp that does not appear in the in-
teractive history. The standard history functionality (savehistory/loadhistory)
in R writes the history only at the end of the session. Thus, if the R session
terminates abnormally, history is lost.

To turn on incremental history recording, issue the command

> track.history.start()

To turn it off, issue the command

> track.history.stop()

The history is stored in a simple text format with time stamps. It can be
viewed in an editor, but be careful not to view it in an editor that locks the file
while the R session is active (many editors under Windows lock the file they
have open, with the exception of emacs.)

5 Cache-policy plugins

There is an option to control whether tracked objects are cached in memory
as well as being stored on disk. By default, objects are cached in memory for
the duration of a top-level task, and are flushed from memory at the end of
a top-level task. This means that when they are accessed again, they must
be read from files. To get faster response when working with collections of
objects that will all fit in memory, turn on caching with and turn off cache-
flushing track.options(cache=TRUE, cachePolicy="none"), or start track-
ing with track.start(..., cache=TRUE, cachePolicy="none"). A possible
future improvement is to allow conditional and/or more intelligent caching of
objects. Some data that would be needed for this is already collected in access
counts and times that are recorded in the tracking summary.

Along these lines, track contains an experimental feature that allows users to
supply their own plugin functions that specify cache rules. Currently, the plugin
function can specify whether or not an object will be flushed from memory at
the end of a top-level command.

Just for fun, here’s an example of a cache plugin function that keeps in
memory variables whose names begin with the letter ’x’. This is only intended
as an illustration of a cache plugin, not as a serious cache plugin function.

plugin <- function(objs, inmem, envname) {

keep <- regexpr("^x", rownames(objs))>0

return(keep)

}

To use this function, supply it to track.options():

4



track.options(cacheKeepFun=plugin, save=TRUE)

The plugin function takes three arguments:

� objs: the object summary dataframe - same as returned by track.summary().
The names of the objects are in the rownames of the dataframe.

� inmem: a logical vector with length equal to the number of rows in objs.
It will have value TRUE where the corresponding object is in memory, and
FALSE otherwise.

� envname: a single string containing the name of the tracking environment,
in a form like <env R_GlobalEnv>.

The plugin function should return a logical vector the same length as inmem,
with TRUE values where the corresponding objects should be kept in memory.
For debugging purposes, it is possible to use browser() in the body of a plugin
function.

6 What track is not good for

Tracking is not particularly suitable for storing objects that contain environ-
ments, because those environments and their contents will be fully written out
in the saved files. In a live R session, environments are references, and there can
be multiple references to one environment, without there being multiple copies
of the environment. However, when objects containing environments are saved
to files, a copy of the environment is written in each file, resulting in duplication
and the loss of links across environments.

Functions are one of the most common objects that contain environments,
which can contain data objects local to the function (e.g., see the examples in the
R FAQ in the section ”Lexical scoping”under ”What are the differences between
R and S?”http://cran.r-project.org/doc/FAQ/R-FAQ.html#Lexical-scoping).
Additionally, the results of some modeling functions contain environments, e.g.,
lm holds several references to the environment that contains the data. When
an lm object is save’ed, the environment containing the data, and all the other
objects in that environment, can be saved in the same file. To work with large
data objects and modeling functions, consider first creating a tracking database
that contains the data objects. Then, in a different R session (which can be
running at the same time), use track.attach to attach the db of data objects
at pos=2 on the search list. When working in this way, the data objects will
only be kept in memory when being used, and modeling functions that record
environments in their results can be successful used (though beware of modeling
functions that store large amounts of data in their results.) Alternatively, use
modeling functions that do not store references to environments. The utility
function show.envs() from the track package will show what environments
are referenced within an object (though it is not guaranteed to find them all.)

5


