An introduction to YASOMI (Yet Another Self
Organising Map Implementation)

Fabrice Rossi

April 13, 2012

The yasomi package aims at providing a complete implementation of Self
Organising Maps (SOMs) adapted to both standard numerical data and to more
complex data described via a dissimilarity matrix or a kernel matrix. Yasomi
tries to include a broad selection of SOM based state of the art visualisation
methods. It also provides automated data driven construction methods for
SOMs.

The following example provides a demonstration of the main features of
yasomi. The SOM algorithm is based on the Euclidean norm and assumes
therefore isotropy in the data space. As a consequence, it is advisable to scale
the data under analysis, unless some prior knowledge suggests to emphasise one
or several variables.

> library(yasomi)
> data <- scale(iris[1:4])

This example uses the Iris dataset for which a SOM is constructed using only
the numerical attributes of the plants.

The SOM algorithm fits a grid of prototypes to the data. The grid topology
(prior arrangement of the prototypes) is under user control. In this example a
rather standard hexagonal based grid is chosen.

> sg <- somgrid(xdim=10,ydim=10,topo="hexagonal")

This grid can be plotted (see Figure 1), even if this representation alone is not
very useful. The main advantage the grid is to provide a support for visualisa-
tion: each cell in Figure 1 is associated to a prototype and close cells correspond
to close prototypes. By filling the cells with colors and/or glyphs computed from
the data, some insights on the structure of the dataset can be obtained, as shown
in the following figures.

The SOM tuning process can be controlled via some parameters. In this
example, one of the parameter (an initial radius which specifies the influence of
the prototypes on each other) is automatically chosen by minimising a distortion
measure.

> somtuning <- som.tune(data,sg,

+ som. tunecontrol (sg,radii=c(2,sg$diam) ,nradii=20,
+ criterion=error.kaskilagus))

> som <- somtuning$best.som

> plot(sg,asp=1)

Figure 1: The prior structure imposed on the prototypes

The quality of the SOM as measured by the chosen criterion (Kaski and La-
gus’ distorsion measure) depends on the initial value of the influence radius, as
shown on Figure 2 (lower values correspond to higher quality). The best SOM
according to the chosen quality measure is kept (in general, the quantisation
error of a SOM that represents correctly the topology of the data will be higher
than the one of a SOM with less topology preservation). The evolution of its
quantisation error during the fitting process is depicted on Figure 3. Yasomi
includes numerous visualisation methods that can be used to display the fitted
SOM. The simplest method consists in displaying the prototypes arranged ac-
cording to the prior structure (a.k.a., the grid). As the prototypes are generally
high dimensional vectors, they are displayed using star glyphs (as shown on
Figure 4), parallel coordinates or barplots. The figure displays an example of
the well known ordering property of the SOM algorithm. The surface of the
glyph increase from left to right and from top to bottom. There are clearly two
classes of glyphs (elongated thin ones on the left and more symetric ones on the
right).

Star glyphs are not always easy to read, especially when dealing with high
dimensional data. In some situations, a color coded display of a selection of
the variables might provide more insight on the data. This can be obtained
via component planes for a SOM, as shown on Figure 5. Each of the sub-
figure displays the values taken by one of the variable over the prototypes of
the SOM. Petal variables (lower row) show very strong correlation as well as a
clear separation between two classes (consistent with the one observed in Figure
4). The sepal width seams also somewhat negatively correlated with the petal
variables.

While the SOM algorithm induces a clustering over the data, some proto-
types might end up with an associated empty cluster. Displaying the size of
each cluster gives sometimes an idea of the topology of the data set by empha-

> plot(somtuning,relative=FALSE)

© B Sqrt quantisation
S 7] O Error
o <o |
L o
a
I
Q
E < |
5 o
e
i}
N
o
o
o

T T T 17 1T 17T 1T T 1T T T T T T T T T T71
2 3.08 417 525 6.33 741 85 958 10.66 12.29

Initial radius

Figure 2: Dependency between the distorsion of the final map and the initial
influence radius

Quantisation error

0.05
|

T T T T T T T
0 5 10 15 20 25 30

Iteration

Figure 3: Evolution of the quantisation error during the fitting process

> plot(som,type="stars",asp=1)

‘ : SRV 2 VR v v
AR VR VA S Vi
) A A0<><><><7<><>
b A AQQQOQOO
b b h<><><><><><7©
NI " VA VA A
b) b B<><><><><>O
D A B@QQQQOO
b BBAQ<><><><><>
PO

—=
=

Figure 4: Star glyphs of the prototypes of the fitted SOM

sising dense or empty area. Figure 6 gives an example of such a display. While
two classes were quite obvious in the previous figures, the picture is not so clear
here. It seems that the left class might be quite dense and separated from the
right one by many empty cells (prototypes with empty cluster) but the right
class seem also to have a substructure that what not clear on the other figures.
Another exploration method for a fitted SOM consists in displaying all the orig-
inal observations that have been assigned to a cluster in a superposed way, as
shown in Figure 7: we used here parallel coordinates which are generally easier
to read that superposed star glyphs. Figure 7 confirms that some structure can
be found in the two large clusters. It also shows that the clustering done in each
grid cell is very homogeneous and therefore that the simplification done by the
SOM does not impair the understanding of the data.

Another common practice for SOM based cluster analysis is to apply a hi-
erarchical clustering to the prototypes of a fitted SOM. Yasomi provides the
distances between the prototypes to ease this approach:

> hc.som <- hclust(as.dist(som),method="ward")

As shown on Figure 8, there are obviously two clusters of prototypes with some
support for up to five clusters, which are identified on the dendrogram and
computed below:

> hc.som.5 <- cutree(hc.som,k=5)

The hit map used in Figure 6 can be colored according to the clusters identified
via the hierarchical clustering, as shown on Figure 9.

Other cluster based information can be displayed, for instance the distri-
bution of the values taken by a variable in each of the clusters defined by the
SOM. This is especially interesting if the variable was not used to build the
SOM. In the present example, the Species variable of the Iris dataset was not

> spar <- par(mfrow=c(2,2))

> for(i in 1:ncol(data)) {

+ componentPlane (som,i,asp=1)
+ }

> par (spar)

Sepal.Length Sepal.Width
Petal.Length Petal.Width

i

Figure 5: Component planes of the prototypes of the fitted SOM

> hitMap (som,col="blue",with.grid=FALSE, asp=1)

Figure 6: Size of the clusters associated to each prototype (hit map)

> plot(som,mode="data",type="parallel",with.grid=TRUE, asp=1)

A e =N
A L~ VN
Ve PN — ~ ~
A e T N
A A AL ———— T ——

AL A —_——~— T~ N

AL AL AL AL ~—Nm T TNV
AL AL AL —_— ~ NN

AN NN N — "1~
NN — T

Figure 7: Parallel coordinates for the observations assigned to each cluster

> spar <- par(mfrow=c(1,2))

> plot(hc.som,labels=FALSE,hang=-1)
> rect.hclust (hc.som,k=5)

> barplot(rev(hc.som$height) [1:20])
> par (spar)

Cluster Dendrogram

3 8
o
© ©
5 o
g % g
o
© o Hr"_"_"_"_"_"—"_"_"—n—
as.dist(som)

hclust (*, "ward")

Figure 8: Dendrogram for the prototype clustering on the left, associated heights
for the first 20 merges on the right

> library(colorspace)
> hitMap (som,with.grid=FALSE, asp=1,col=rainbow_hcl (5,start=30,end=300) [hc.som.5])

Figure 9: Size of the clusters associated to each prototype colored via hierarchi-
cal clustering of the prototypes

used. When the distribution of this variable in each cluster is concentrated (in
the best case, the variable has a constant value in each cluster), the SOM has
managed to follow the class distribution using only the numerical characteris-
tics of the flowers. This is roughly the case in the optimal SOM, has shown on
Figure 10. One of the cluster identified in the previous analysis corresponds to
one of the original class, while the second cluster is the union of the two other
classes. Those two classes appear quite well separated except for a few clusters.
However, the comparison of Figure 9 and Figure 10 shows that the clustering

> plot(som,mapToUnit (som,iris[[5]]),mode="data", type="barplot",asp=1)

B = = 0 = =l o O=___

m - B .0 0.

. B oaaam =
I | IO I
N N N - U R O
I P N - B T |
S - I - R N B |
| I - TS B
I - I SR

Figure 10: Distribution of an additional variable (here the Species variable of
the Iris dataset)

of the prototypes does not recover the original separation in three classes.

As a comparison, Figure 11 shows a related analysis conducted via principal
component analysis (PCA). More precisely, a PCA is conducted on the Iris data
using the numerical variables only while the Species variable is used to colour the
projected points. While the results are quite comparable, especially regarding
the presence of two clearly separated clusters and the near separability between
the two classes that form the second cluster, a few differences can be spotted. All
in one, the SOM seems to give more weight to the idea that the three classes can
be separated easily than the PCA. There is some interleaving in the classes in the
SOM (especially a small blue cluster in the middle of green clusters) while the
PCA shows a more complex boundary between the two classes. As the PCA
projects the observations, it introduces spurious neighbourhood relationships
between some points. The SOM generally respects more the original topology.
In this particular example, the SOM is therefore able to give a better picture of
the original structure of the dataset.

Another way of viewing the results of the SOM is to compute a PCA on
the prototypes obtained by the SOM and to use it to display both the data
and the prototypes (one can also use a non linear projection method). Figure
12 is obtained with this approach. The black dots are the prototypes and the

> iris.pca <- prcomp(data)
> plot(iris.pca$x,pch=20,
+ col=c("red", "green", "blue") [unclass(iris[[5]])])

PC2
0
1
A

-3 -2 -1 0 1 2 3

PC1

Figure 11: Principal Component Analysis applied to the Iris dataset

lines between them display the direct neighbourhood relationship enforced by
the prior structure.

One limitation of the grid based display of the SOM is that the distances be-
tween clusters in those representations are arbitrary while the distances between
prototypes in the original space provide insights on the relation between those
clusters. The u-matrix and its numerous variations gives a visual representation
of the distribution of those distances, as shown on Figure 13. This representa-
tion confirms the existence of two classes in the data and also the presence of
some sub-structure in the largest class (on the right part of all figures). Another
u-matrix like representation is provided by the plotting method associated to
the object that represents prototypes distances, as shown on Figure 14.

som.pca <- prcomp(som$prototypes)
data.pca <- predict(som.pca,data)
plot(data.pca,pch=20,xlim=range (data.pcal,1],som.pca$x[,1]),
ylim=range (data.pcal,2],som.pca$x[,2]),
col=c("red", "green", "blue") [unclass (iris[[5]]1)])
lines(grid2lines (som, som.pca$x),type="b",pch=20)

vV + + Vv VvV

®
i
i
4>
/

-1
|
N
T;’- Y .
\ £71/
Voslll/1/
)
i
0/..
\I

Figure 12: Principal Component Analysis display of the prototypes of the fitted
SOM

10

> pdist <- prototype.distances (som)
> pgrid <- distance.grid(pdist)
> filled.contour(pgrid,color.palette=terrain.colors,asp=1)

14
12
1.0
0.8
0.6

0.4

0.2

Figure 13: A type of U-matrix

> plot(pdist,color.palette=terrain.colors,asp=1)

Figure 14: A discrete type of U-matrix

11

