Fit linear, logistic and Cox models regularized with L0, lasso (L1), elastic-net (L1 and L2), or net (L1 and Laplacian) penalty, and their adaptive forms, such as adaptive lasso / elastic-net and net adjusting for signs of linked coefficients. It solves L0 penalty problem by simultaneously selecting regularization parameters and performing hard-thresholding or selecting number of non-zeros. This augmented and penalized minimization method provides an approximation solution to the L0 penalty problem, but runs as fast as L1 regularization problem. The package uses one-step coordinate descent algorithm and runs extremely fast by taking into account the sparsity structure of coefficients. It could deal with very high dimensional data and has superior selection performance.
Package details |
|
---|---|
Author | Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang |
Maintainer | Xiang Li <spiritcoke@gmail.com> |
License | GPL (>= 2) |
Version | 0.10 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.