Addressing measurement error in covariates and misclassification in binary outcome variables within causal inference, the 'ATE.ERROR' package implements inverse probability weighted estimation methods proposed by Shu and Yi (2017, <doi:10.1177/0962280217743777>; 2019, <doi:10.1002/sim.8073>). These methods correct errors to accurately estimate average treatment effects (ATE). The package includes two main functions: ATE.ERROR.Y() for handling misclassification in the outcome variable and ATE.ERROR.XY() for correcting both outcome misclassification and covariate measurement error. It employs logistic regression for treatment assignment and uses bootstrap sampling to calculate standard errors and confidence intervals, with simulated datasets provided for practical demonstration.
Package details |
|
---|---|
Author | Aryan Rezanezhad [aut, cre], Grace Y. Yi [aut] |
Maintainer | Aryan Rezanezhad <Aryan.rzn@gmail.com> |
License | GPL (>= 3) |
Version | 1.0.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.