It is very common nowadays for a study to collect multiple features and appropriately integrating multiple longitudinal features simultaneously for defining individual clusters becomes increasingly crucial to understanding population heterogeneity and predicting future outcomes. 'BCClong' implements a Bayesian consensus clustering (BCC) model for multiple longitudinal features via a generalized linear mixed model. Compared to existing packages, several key features make the 'BCClong' package appealing: (a) it allows simultaneous clustering of mixed-type (e.g., continuous, discrete and categorical) longitudinal features, (b) it allows each longitudinal feature to be collected from different sources with measurements taken at distinct sets of time points (known as irregularly sampled longitudinal data), (c) it relaxes the assumption that all features have the same clustering structure by estimating the feature-specific (local) clusterings and consensus (global) clustering.
Package details |
|
---|---|
Author | Zhiwen Tan [aut, cre], Zihang Lu [ctb], Chang Shen [ctb] |
Maintainer | Zhiwen Tan <21zt9@queensu.ca> |
License | MIT + file LICENSE |
Version | 1.0.3 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.