Tool to perform Bayesian inference of carcass processing/transport strategy and bone attrition from archaeofaunal skeletal profiles characterized by percentages of MAU (Minimum Anatomical Units). The approach is based on a generative model for skeletal profiles that replicates the two phases of formation of any faunal assemblage: initial accumulation as a function of human transport strategies and subsequent attrition.Two parameters define this model: 1) the transport preference (alpha), which can take any value between - 1 (mostly axial contribution) and 1 (mostly appendicular contribution) following strategies constructed as a function of butchering efficiency of different anatomical elements and the results of ethnographic studies, and 2) degree of attrition (beta), which can vary between 0 (no attrition) and 10 (maximum attrition) and relates the survivorship of bone elements to their maximum bone density. Starting from uniform prior probability distribution functions of alpha and beta, a Monte Carlo Markov Chain sampling based on a random walk Metropolis-Hasting algorithm is adopted to derive the posterior probability distribution functions, which are then available for interpretation. During this process, the likelihood of obtaining the observed percentages of MAU given a pair of parameter values is estimated by the inverse of the Chi2 statistic, multiplied by the proportion of elements within a 1 percent of the observed value. See Ana B. Marin-Arroyo, David Ocio (2018).<doi:10.1080/08912963.2017.1336620>.
Package details |
|
---|---|
Author | Ana B. Marín-Arroyo [aut], David Ocio [aut], Marco Vidal-Cordasco [cbt], Delphine Vettese [cbt] |
Maintainer | Marco Vidal-Cordasco <marcovidalcordasco@gmail.com> |
License | GPL-3 |
Version | 1.1.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.