Nothing
As heavy-tailed error distribution and outliers in the response variable widely exist, models which are robust to data contamination are highly demanded. Here, we develop a novel robust Bayesian variable selection method with elastic net penalty. In particular, the spike-and-slab priors have been incorporated to impose sparsity. An efficient Gibbs sampler has been developed to facilitate computation.The core modules of the package have been developed in 'C++' and R.
Package details |
|
---|---|
Author | Xi Lu [aut, cre], Cen Wu [aut] |
Maintainer | Xi Lu <xilu@ksu.edu> |
License | GPL-2 |
Version | 0.3 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.