Blend: Robust Bayesian Longitudinal Regularized Semiparametric Mixed Models

Our recently developed fully robust Bayesian semiparametric mixed-effect model for high-dimensional longitudinal studies with heterogeneous observations can be implemented through this package. This model can distinguish between time-varying interactions and constant-effect-only cases to avoid model misspecifications. Facilitated by spike-and-slab priors, this model leads to superior performance in estimation, identification and statistical inference. In particular, robust Bayesian inferences in terms of valid Bayesian credible intervals on both parametric and nonparametric effects can be validated on finite samples. The Markov chain Monte Carlo algorithms of the proposed and alternative models are efficiently implemented in 'C++'.

Package details

AuthorKun Fan [aut, cre], Cen Wu [aut]
MaintainerKun Fan <kfan@ksu.edu>
LicenseGPL-2
Version0.1.1.1
URL https://github.com/kunfa/Blend
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("Blend")

Try the Blend package in your browser

Any scripts or data that you put into this service are public.

Blend documentation built on April 3, 2025, 10:36 p.m.