Joint and Individual Variation Explained (JIVE) is a method for decomposing multiple datasets obtained on the same subjects into shared structure, structure unique to each dataset, and noise. The two most common implementations are R.JIVE, an iterative approach, and AJIVE, which uses principal angle analysis. JIVE estimates subspaces but interpreting these subspaces can be challenging with AJIVE or R.JIVE. We expand upon insights into AJIVE as a canonical correlation analysis (CCA) of principal component scores. This reformulation, which we call CJIVE, 1) provides an ordering of joint components by the degree of correlation between corresponding canonical variables; 2) uses a computationally efficient permutation test for the number of joint components, which provides a p-value for each component; and 3) can be used to predict subject scores for out-of-sample observations. Please cite the following article when utilizing this package: Murden, R., Zhang, Z., Guo, Y., & Risk, B. (2022) <doi:10.3389/fnins.2022.969510>.
Package details |
|
---|---|
Author | Raphiel Murden [aut, cre] (<https://orcid.org/0000-0002-6396-9105>), Benjamin Risk [aut] |
Maintainer | Raphiel Murden <rmurden@emory.edu> |
License | MIT + file LICENSE |
Version | 0.1.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.