Quantitative characterization of the health impacts associated with exposure to chemical mixtures has received considerable attention in current environmental and epidemiological studies. 'CompMix' package allows practitioners to estimate the health impacts from exposure to chemical mixtures data through various statistical approaches, including Lasso, Elastic net, Bayeisan kernel machine regression (BKMR), hierNet, Quantile g-computation, Weighted quantile sum (WQS) and Random forest. Hao W, Cathey A, Aung M, Boss J, Meeker J, Mukherjee B. (2024) "Statistical methods for chemical mixtures: a practitioners guide". <DOI:10.1101/2024.03.03.24303677>.
Package details |
|
---|---|
Author | Wei Hao [aut, cre] |
Maintainer | Wei Hao <weihao@umich.edu> |
License | GPL-3 |
Version | 0.1.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.