Perform model selection using distribution and probability-based methods, including standardized AIC, BIC, and AICc. These standardized information criteria allow one to perform model selection in a way similar to the prevalent "Rule of 2" method, but formalize the method to rely on probability theory. A novel goodness-of-fit procedure for assessing linear regression models is also available. This test relies on theoretical properties of the estimated error variance for a normal linear regression model, and employs a bootstrap procedure to assess the null hypothesis that the fitted model shows no lack of fit. For more information, see Koeneman and Cavanaugh (2023) <arXiv:2309.10614>. Functionality to perform all subsets linear or generalized linear regression is also available.
Package details |
|
---|---|
Author | Scott H. Koeneman [aut, cre] |
Maintainer | Scott H. Koeneman <Scott.Koeneman@jefferson.edu> |
License | GPL-3 |
Version | 0.2.0 |
URL | https://github.com/shkoeneman/DBModelSelect |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.