batch_size_default | Default batch size (internal) |
check_directory | Check directory existence |
compute_EQRN_GPDLoss | Generalized Pareto likelihood loss of a EQRN_iid predictor |
compute_EQRN_seq_GPDLoss | Generalized Pareto likelihood loss of a EQRN_seq predictor |
decay_learning_rate | Performs a learning rate decay step on an optimizer |
default_device | Default torch device |
end_doFuture_strategy | End the currently set doFuture strategy |
EQRN_excess_probability | Tail excess probability prediction using an EQRN_iid object |
EQRN_excess_probability_seq | Tail excess probability prediction using an EQRN_seq object |
EQRN_fit | EQRN fit function for independent data |
EQRN_fit_restart | Wrapper for fitting EQRN with restart for stability |
EQRN_fit_seq | EQRN fit function for sequential and time series data |
EQRN_load | Load an EQRN object from disc |
EQRN-package | EQRN: Extreme Quantile Regression Neural Networks for Risk... |
EQRN_predict | Predict function for an EQRN_iid fitted object |
EQRN_predict_internal | Internal predict function for an EQRN_iid |
EQRN_predict_internal_seq | Internal predict function for an EQRN_seq fitted object |
EQRN_predict_params | GPD parameters prediction function for an EQRN_iid fitted... |
EQRN_predict_params_seq | GPD parameters prediction function for an EQRN_seq fitted... |
EQRN_predict_seq | Predict function for an EQRN_seq fitted object |
EQRN_save | Save an EQRN object on disc |
excess_probability | Excess Probability Predictions |
excess_probability.EQRN_iid | Tail excess probability prediction method using an EQRN_iid... |
excess_probability.EQRN_seq | Tail excess probability prediction method using an EQRN_iid... |
FC_GPD_net | MLP module for GPD parameter prediction |
FC_GPD_SNN | Self-normalized fully-connected network module for GPD... |
fit_GPD_unconditional | Maximum likelihood estimates for the GPD distribution using... |
fix_dimsimplif | (INTERNAL) Corrects a dimension simplification bug from the... |
get_doFuture_operator | Get doFuture operator |
get_excesses | Computes rescaled excesses over the conditional quantiles |
GPD_excess_probability | Tail excess probability prediction based on conditional GPD... |
GPD_quantiles | Compute extreme quantile from GPD parameters |
install_backend | Install Torch Backend |
instantiate_EQRN_network | Instantiates the default networks for training a EQRN_iid... |
lagged_features | Covariate lagged replication for temporal dependence |
last_elem | Last element of a vector |
legacy_names | Internal renaming function for back-compatibility |
list2matrix | Convert a list to a matrix |
loss_GPD | Generalized Pareto likelihood loss |
loss_GPD_tensor | GPD tensor loss function for training a EQRN network |
make_folds | Create cross-validation folds |
mean_absolute_error | Mean absolute error |
mean_squared_error | Mean squared error |
mts_dataset | Dataset creator for sequential data |
multilevel_exceedance_proba_error | Multilevel 'quantile_exceedance_proba_error' |
multilevel_MAE | Multilevel quantile MAEs |
multilevel_MSE | Multilevel quantile MSEs |
multilevel_pred_bias | Multilevel prediction bias |
multilevel_prop_below | Multilevel 'proportion_below' |
multilevel_q_loss | Multilevel quantile losses |
multilevel_q_pred_error | Multilevel 'quantile_prediction_error' |
multilevel_resid_var | Multilevel residual variance |
multilevel_R_squared | Multilevel R squared |
nn_alpha_dropout | Alpha-dropout module |
nn_dropout_nd | Dropout module |
onload_backend_installer | On-Load Torch Backend Internal Install helper |
perform_scaling | Performs feature scaling without overfitting |
predict.EQRN_iid | Predict method for an EQRN_iid fitted object |
predict.EQRN_seq | Predict method for an EQRN_seq fitted object |
predict_GPD_semiconditional | Predict semi-conditional extreme quantiles using peaks over... |
prediction_bias | Prediction bias |
prediction_residual_variance | Prediction residual variance |
predict.QRN_seq | Predict method for a QRN_seq fitted object |
predict_unconditional_quantiles | Predict unconditional extreme quantiles using peaks over... |
process_features | Feature processor for EQRN |
proportion_below | Proportion of observations below conditional quantile vector |
QRN_fit_multiple | Wrapper for fitting a recurrent QRN with restart for... |
QRNN_RNN_net | Recurrent quantile regression neural network module |
QRN_seq_fit | Recurrent QRN fitting function |
QRN_seq_predict | Predict function for a QRN_seq fitted object |
QRN_seq_predict_foldwise | Foldwise fit-predict function using a recurrent QRN |
QRN_seq_predict_foldwise_sep | Sigle-fold foldwise fit-predict function using a recurrent... |
quantile_exceedance_proba_error | Quantile exceedance probability prediction calibration error |
quantile_loss | Quantile loss |
quantile_loss_tensor | Tensor quantile loss function for training a QRN network |
quantile_prediction_error | Quantile prediction calibration error |
Recurrent_GPD_net | Recurrent network module for GPD parameter prediction |
roundm | Mathematical number rounding |
R_squared | R squared |
safe_save_rds | Safe RDS save |
semiconditional_train_valid_GPD_loss | Semi-conditional GPD MLEs and their train-validation... |
Separated_GPD_SNN | Self-normalized separated network module for GPD parameter... |
set_doFuture_strategy | Set a doFuture execution strategy |
setup_optimizer | Instantiate an optimizer for training an EQRN_iid network |
setup_optimizer_seq | Instantiate an optimizer for training an EQRN_seq network |
square_loss | Square loss |
unconditional_train_valid_GPD_loss | Unconditional GPD MLEs and their train-validation likelihoods |
vec2mat | Convert a vector to a matrix |
vector_insert | Insert value in vector |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.