Man pages for EQRN
Extreme Quantile Regression Neural Networks for Risk Forecasting

batch_size_defaultDefault batch size (internal)
check_directoryCheck directory existence
compute_EQRN_GPDLossGeneralized Pareto likelihood loss of a EQRN_iid predictor
compute_EQRN_seq_GPDLossGeneralized Pareto likelihood loss of a EQRN_seq predictor
decay_learning_ratePerforms a learning rate decay step on an optimizer
default_deviceDefault torch device
end_doFuture_strategyEnd the currently set doFuture strategy
EQRN_excess_probabilityTail excess probability prediction using an EQRN_iid object
EQRN_excess_probability_seqTail excess probability prediction using an EQRN_seq object
EQRN_fitEQRN fit function for independent data
EQRN_fit_restartWrapper for fitting EQRN with restart for stability
EQRN_fit_seqEQRN fit function for sequential and time series data
EQRN_loadLoad an EQRN object from disc
EQRN-packageEQRN: Extreme Quantile Regression Neural Networks for Risk...
EQRN_predictPredict function for an EQRN_iid fitted object
EQRN_predict_internalInternal predict function for an EQRN_iid
EQRN_predict_internal_seqInternal predict function for an EQRN_seq fitted object
EQRN_predict_paramsGPD parameters prediction function for an EQRN_iid fitted...
EQRN_predict_params_seqGPD parameters prediction function for an EQRN_seq fitted...
EQRN_predict_seqPredict function for an EQRN_seq fitted object
EQRN_saveSave an EQRN object on disc
excess_probabilityExcess Probability Predictions
excess_probability.EQRN_iidTail excess probability prediction method using an EQRN_iid...
excess_probability.EQRN_seqTail excess probability prediction method using an EQRN_iid...
FC_GPD_netMLP module for GPD parameter prediction
FC_GPD_SNNSelf-normalized fully-connected network module for GPD...
fit_GPD_unconditionalMaximum likelihood estimates for the GPD distribution using...
fix_dimsimplif(INTERNAL) Corrects a dimension simplification bug from the...
get_doFuture_operatorGet doFuture operator
get_excessesComputes rescaled excesses over the conditional quantiles
GPD_excess_probabilityTail excess probability prediction based on conditional GPD...
GPD_quantilesCompute extreme quantile from GPD parameters
install_backendInstall Torch Backend
instantiate_EQRN_networkInstantiates the default networks for training a EQRN_iid...
lagged_featuresCovariate lagged replication for temporal dependence
last_elemLast element of a vector
legacy_namesInternal renaming function for back-compatibility
list2matrixConvert a list to a matrix
loss_GPDGeneralized Pareto likelihood loss
loss_GPD_tensorGPD tensor loss function for training a EQRN network
make_foldsCreate cross-validation folds
mean_absolute_errorMean absolute error
mean_squared_errorMean squared error
mts_datasetDataset creator for sequential data
multilevel_exceedance_proba_errorMultilevel 'quantile_exceedance_proba_error'
multilevel_MAEMultilevel quantile MAEs
multilevel_MSEMultilevel quantile MSEs
multilevel_pred_biasMultilevel prediction bias
multilevel_prop_belowMultilevel 'proportion_below'
multilevel_q_lossMultilevel quantile losses
multilevel_q_pred_errorMultilevel 'quantile_prediction_error'
multilevel_resid_varMultilevel residual variance
multilevel_R_squaredMultilevel R squared
nn_alpha_dropoutAlpha-dropout module
nn_dropout_ndDropout module
onload_backend_installerOn-Load Torch Backend Internal Install helper
perform_scalingPerforms feature scaling without overfitting
predict.EQRN_iidPredict method for an EQRN_iid fitted object
predict.EQRN_seqPredict method for an EQRN_seq fitted object
predict_GPD_semiconditionalPredict semi-conditional extreme quantiles using peaks over...
prediction_biasPrediction bias
prediction_residual_variancePrediction residual variance
predict.QRN_seqPredict method for a QRN_seq fitted object
predict_unconditional_quantilesPredict unconditional extreme quantiles using peaks over...
process_featuresFeature processor for EQRN
proportion_belowProportion of observations below conditional quantile vector
QRN_fit_multipleWrapper for fitting a recurrent QRN with restart for...
QRNN_RNN_netRecurrent quantile regression neural network module
QRN_seq_fitRecurrent QRN fitting function
QRN_seq_predictPredict function for a QRN_seq fitted object
QRN_seq_predict_foldwiseFoldwise fit-predict function using a recurrent QRN
QRN_seq_predict_foldwise_sepSigle-fold foldwise fit-predict function using a recurrent...
quantile_exceedance_proba_errorQuantile exceedance probability prediction calibration error
quantile_lossQuantile loss
quantile_loss_tensorTensor quantile loss function for training a QRN network
quantile_prediction_errorQuantile prediction calibration error
Recurrent_GPD_netRecurrent network module for GPD parameter prediction
roundmMathematical number rounding
R_squaredR squared
safe_save_rdsSafe RDS save
semiconditional_train_valid_GPD_lossSemi-conditional GPD MLEs and their train-validation...
Separated_GPD_SNNSelf-normalized separated network module for GPD parameter...
set_doFuture_strategySet a doFuture execution strategy
setup_optimizerInstantiate an optimizer for training an EQRN_iid network
setup_optimizer_seqInstantiate an optimizer for training an EQRN_seq network
square_lossSquare loss
unconditional_train_valid_GPD_lossUnconditional GPD MLEs and their train-validation likelihoods
vec2matConvert a vector to a matrix
vector_insertInsert value in vector
EQRN documentation built on April 4, 2025, 12:45 a.m.