Rolling and expanding window approaches to assessing abundance based early warning signals, non-equilibrium resilience measures, and machine learning. See Dakos et al. (2012) <doi:10.1371/journal.pone.0041010>, Deb et al. (2022) <doi:10.1098/rsos.211475>, Drake and Griffen (2010) <doi:10.1038/nature09389>, Ushio et al. (2018) <doi:10.1038/nature25504> and Weinans et al. (2021) <doi:10.1038/s41598-021-87839-y> for methodological details. Graphical presentation of the outputs are also provided for clear and publishable figures. Visit the 'EWSmethods' website for more information, and tutorials.
Package details |
|
---|---|
Author | Duncan O'Brien [aut, cre, cph] (<https://orcid.org/0000-0002-3420-5210>), Smita Deb [aut] (<https://orcid.org/0000-0001-7037-7055>), Sahil Sidheekh [aut], Narayanan Krishnan [aut], Partha Dutta [aut] (<https://orcid.org/0000-0001-6067-1023>), Christopher Clements [aut] (<https://orcid.org/0000-0001-5677-5401>) |
Maintainer | Duncan O'Brien <duncan.a.obrien@gmail.com> |
License | MIT + file LICENSE |
Version | 1.3.1 |
URL | https://github.com/duncanobrien/EWSmethods https://duncanobrien.github.io/EWSmethods/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.