Nothing
Provides a general and efficient tool for fitting a response surface to a dataset via Gaussian processes. The dataset can have multiple responses and be noisy (with stationary variance). The fitted GP model can predict the gradient as well. The package is based on the work of Bostanabad, R., Kearney, T., Tao, S. Y., Apley, D. W. & Chen, W. (2018) Leveraging the nugget parameter for efficient Gaussian process modeling. International Journal for Numerical Methods in Engineering, 114, 501-516.
Package details |
|
---|---|
Author | Ramin Bostanabad, Tucker Kearney, Siyo Tao, Daniel Apley, and Wei Chen (IDEAL) |
Maintainer | Ramin Bostanabad <bostanabad@u.northwestern.edu> |
License | GPL-2 |
Version | 3.0.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.