Nothing
Implements Heckman selection models using a Bayesian approach via 'Stan' and compares the performance of normal, Student’s t, and contaminated normal distributions in addressing complexities and selection bias (Heeju Lim, Victor E. Lachos, and Victor H. Lachos, Bayesian analysis of flexible Heckman selection models using Hamiltonian Monte Carlo, 2025, under submission).
Package details |
|
---|---|
Author | Heeju Lim [aut, cre], Victor E. Lachos [aut], Victor H. Lachos [aut] |
Maintainer | Heeju Lim <heeju.lim@uconn.edu> |
License | GPL-3 |
Version | 1.0.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.