Machine learning hierarchical risk clustering portfolio allocation strategies. The implemented methods are: Hierarchical risk parity (De Prado, 2016) <DOI: 10.3905/jpm.2016.42.4.059>. Hierarchical clustering-based asset allocation (Raffinot, 2017) <DOI: 10.3905/jpm.2018.44.2.089>. Hierarchical equal risk contribution portfolio (Raffinot, 2018) <DOI: 10.2139/ssrn.3237540>. A Constrained Hierarchical Risk Parity Algorithm with Cluster-based Capital Allocation (Pfitzingera and Katzke, 2019) <https://www.ekon.sun.ac.za/wpapers/2019/wp142019/wp142019.pdf>.
Package details |
|
---|---|
Author | Carlos Trucios [aut, cre] (<https://orcid.org/0000-0001-8746-8877>), Moon Jun Kwon [aut], São Paulo Research Foundation (FAPESP), grant 2022/09122-0 [fnd], Programa de Incentivo a Novos Docentes da UNICAMP (PIND), grant 2525/23 [fnd] |
Maintainer | Carlos Trucios <ctrucios@unicamp.br> |
License | GPL-2 |
Version | 1.0.1 |
URL | https://github.com/ctruciosm/HierPortfolios |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.