This function predicts item response probabilities and item responses using the item-focused tree model. The item-focused tree model combines logistic regression with recursive partitioning to detect Differential Item Functioning in dichotomous items. The model applies partitioning rules to the data, splitting it into homogeneous subgroups, and uses logistic regression within each subgroup to explain the data. Differential Item Functioning detection is achieved by examining potential group differences in item response patterns. This method is useful for understanding how different predictors, such as demographic or psychological factors, influence item responses across subgroups.
Package details |
|
---|---|
Author | Muditha L. Bodawatte Gedara [aut, cre], Barret A. Monchka [aut], Lisa M. Lix [aut] |
Maintainer | Muditha L. Bodawatte Gedara <muditha.lakmali.1993@gmail.com> |
License | MIT + file LICENSE |
Version | 0.1.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.