Nothing
Implementation of Kmeans clustering algorithm and a supervised KNN (K Nearest Neighbors) learning method. It allows users to perform unsupervised clustering and supervised classification on their datasets. Additional features include data normalization, imputation of missing values, and the choice of distance metric. The package also provides functions to determine the optimal number of clusters for Kmeans and the best k-value for KNN: knn_Function(), find_Knn_best_k(), KMEANS_FUNCTION(), and find_Kmeans_best_k().
Package details |
|
---|---|
Author | LALLOGO Lassané [aut, cre] (<https://orcid.org/0009-0004-1637-3511>) |
Maintainer | LALLOGO Lassané <lassanelallogo2002@gmail.com> |
License | GPL-3 |
Version | 0.1.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.