Trend filtering is a widely used nonparametric method for knot detection. This package provides an efficient solution for L0 trend filtering, avoiding the traditional methods of using Lagrange duality or Alternating Direction Method of Multipliers algorithms. It employ a splicing approach that minimizes L0-regularized sparse approximation by transforming the L0 trend filtering problem. The package excels in both efficiency and accuracy of trend estimation and changepoint detection in segmented functions. References: Wen et al. (2020) <doi:10.18637/jss.v094.i04>; Zhu et al. (2020)<doi:10.1073/pnas.2014241117>; Wen et al. (2023) <doi:10.1287/ijoc.2021.0313>.
Package details |
|
---|---|
Author | Tianhao Wang [aut, cre], Canhong Wen [aut] |
Maintainer | Tianhao Wang <tianhaowang@mail.ustc.edu.cn> |
License | GPL (>= 3) |
Version | 0.1.0 |
URL | https://github.com/C2S2-HF/InverseL0TF |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.