Balancing quasi-experimental field research for effects of covariates is fundamental for drawing causal inference. Propensity Score Matching deals with this issue but current techniques are restricted to binary treatment variables. Moreover, they provide several solutions without providing a comprehensive framework on choosing the best model. The MAGMA R-package addresses these restrictions by offering nearest neighbor matching for two to four groups. It also includes the option to match data of a 2x2 design. In addition, MAGMA includes a framework for evaluating the post-matching balance. The package includes functions for the matching process and matching reporting. We provide a tutorial on MAGMA as vignette. More information on MAGMA can be found in Feuchter, M. D., Urban, J., Scherrer V., Breit, M. L., and Preckel F. (2022) <https://osf.io/p47nc/>.
Package details |
|
---|---|
Author | Julian Urban [aut, cre], Markus D. Feuchter [aut], Vsevolod Scherrer [aut], Moritz L. Breit [aut], Franzis Preckel [aut] |
Maintainer | Julian Urban <urbanj@uni-trier.de> |
License | GPL-3 |
Version | 1.0.3 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.