The routine gof_test() in this package runs the goodness-of-fit test using various test statistic for multivariate data. Models under the null hypothesis can either be simple or allow for parameter estimation. p values are found via the parametric bootstrap (simulation). The routine gof_test_adjusted_pvalues() runs several tests and then finds a p value adjusted for simultaneous inference. The routine gof_power() allows the estimation of the power of the tests. hybrid_test() and hybrid_power() do the same by first generating a Monte Carlo data set under the null hypothesis and then running a number of two-sample methods. The routine run.studies() allows a user to quickly study the power of a new method and how it compares to those included in the package via a large number of case studies. For details of the methods and references see the included vignettes.
Package details |
|
|---|---|
| Author | Wolfgang Rolke [aut, cre] (ORCID: <https://orcid.org/0000-0002-3514-726X>) |
| Maintainer | Wolfgang Rolke <wolfgang.rolke@upr.edu> |
| License | GPL (>= 2) |
| Version | 1.0.0 |
| Package repository | View on CRAN |
| Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.