MatrixHMM: Parsimonious Families of Hidden Markov Models for Matrix-Variate Longitudinal Data

Implements three families of parsimonious hidden Markov models (HMMs) for matrix-variate longitudinal data using the Expectation-Conditional Maximization (ECM) algorithm. The package supports matrix-variate normal, t, and contaminated normal distributions as emission distributions. For each hidden state, parsimony is achieved through the eigen-decomposition of the covariance matrices associated with the emission distribution. This approach results in a comprehensive set of 98 parsimonious HMMs for each type of emission distribution. Atypical matrix detection is also supported, utilizing the fitted (heavy-tailed) models.

Getting started

Package details

AuthorSalvatore D. Tomarchio [aut, cre]
MaintainerSalvatore D. Tomarchio <daniele.tomarchio@unict.it>
LicenseGPL (>= 3)
Version1.0.0
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("MatrixHMM")

Try the MatrixHMM package in your browser

Any scripts or data that you put into this service are public.

MatrixHMM documentation built on Sept. 11, 2024, 8:19 p.m.