MixtureMissing: Robust and Flexible Model-Based Clustering for Data Sets with Missing Values at Random

Implementations of various robust and flexible model-based clustering methods for data sets with missing values at random. Two main models are: Multivariate Contaminated Normal Mixture (MCNM, Tong and Tortora, 2022, <doi:10.1007/s11634-021-00476-1>) and Multivariate Generalized Hyperbolic Mixture (MGHM, Wei et al., 2019, <doi:10.1016/j.csda.2018.08.016>). Mixtures via some special or limiting cases of the multivariate generalized hyperbolic distribution are also included: Normal-Inverse Gaussian, Symmetric Normal-Inverse Gaussian, Skew-Cauchy, Cauchy, Skew-t, Student's t, Normal, Symmetric Generalized Hyperbolic, Hyperbolic Univariate Marginals, Hyperbolic, and Symmetric Hyperbolic.

Getting started

Package details

AuthorHung Tong [aut, cre], Cristina Tortora [aut, ths, dgs]
MaintainerHung Tong <hungtongmx@gmail.com>
LicenseGPL (>= 2)
Version3.0.3
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("MixtureMissing")

Try the MixtureMissing package in your browser

Any scripts or data that you put into this service are public.

MixtureMissing documentation built on Oct. 16, 2024, 1:09 a.m.