Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.
Package details |
|
---|---|
Author | Keefe Murphy [aut, cre] (<https://orcid.org/0000-0002-7709-3159>), Thomas Brendan Murphy [ctb] (<https://orcid.org/0000-0002-5668-7046>) |
Maintainer | Keefe Murphy <keefe.murphy@mu.ie> |
License | GPL (>= 3) |
Version | 1.5.2 |
URL | https://cran.r-project.org/package=MoEClust |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.