Implements a set of methodological tools that enable researchers to apply matching methods to time-series cross-sectional data. Imai, Kim, and Wang (2023) <http://web.mit.edu/insong/www/pdf/tscs.pdf> proposes a nonparametric generalization of the difference-in-differences estimator, which does not rely on the linearity assumption as often done in practice. Researchers first select a method of matching each treated observation for a given unit in a particular time period with control observations from other units in the same time period that have a similar treatment and covariate history. These methods include standard matching methods based on propensity score and Mahalanobis distance, as well as weighting methods. Once matching and refinement is done, treatment effects can be estimated with standard errors. The package also offers diagnostics for researchers to assess the quality of their results.
Package details |
|
---|---|
Author | In Song Kim [aut, cre], Adam Rauh [aut], Erik Wang [aut], Kosuke Imai [aut] |
Maintainer | In Song Kim <insong@mit.edu> |
License | GPL (>= 3) |
Version | 2.2.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.