Nothing
A user friendly way to create patient level prediction models using the Observational Medical Outcomes Partnership Common Data Model. Given a cohort of interest and an outcome of interest, the package can use data in the Common Data Model to build a large set of features. These features can then be used to fit a predictive model with a number of machine learning algorithms. This is further described in Reps (2017) <doi:10.1093/jamia/ocy032>.
Package details |
|
---|---|
Author | Egill Fridgeirsson [aut, cre], Jenna Reps [aut], Martijn Schuemie [aut], Marc Suchard [aut], Patrick Ryan [aut], Peter Rijnbeek [aut], Observational Health Data Science and Informatics [cph] |
Maintainer | Egill Fridgeirsson <e.fridgeirsson@erasmusmc.nl> |
License | Apache License 2.0 |
Version | 6.4.0 |
URL | https://ohdsi.github.io/PatientLevelPrediction/ https://github.com/OHDSI/PatientLevelPrediction |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.