The Proportional Subdistribution Hazard (PSH) model has been popular for estimating the effects of the covariates on the cause of interest in Competing Risks analysis. The fast accumulation of large scale datasets has posed a challenge to classical statistical methods. Current penalized variable selection methods show unsatisfactory performance in ultra-high dimensional data. We propose a novel method, the Random Approximate Elastic Net (RAEN), with a robust and generalized solution to the variable selection problem for the PSH model. Our method shows improved sensitivity for variable selection compared with current methods.
Package details |
|
---|---|
Author | Han Sun and Xiaofeng Wang |
Maintainer | Han Sun <han.sunny@gmail.com> |
License | GPL (>= 2) |
Version | 0.2 |
URL | https://github.com/saintland/RAEN |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.