Provides a recursive gradient scanning algorithm for discretizing continuous variables in Logistic and Cox regression models. This algorithm is especially effective in identifying optimal cut-points for variables with U-shaped relationships to 'lnOR' (the natural logarithm of the odds ratio) or 'lnHR' (the natural logarithm of the hazard ratio), thereby enhancing model fit, interpretability, and predictive power. By iteratively scanning and calculating gradient changes, the method accurately pinpoints critical cut-points within nonlinear relationships, transforming continuous variables into categorical ones. This approach improves risk classification and regression analysis performance, increasing interpretability and practical relevance in clinical and risk management settings.
Package details |
|
---|---|
Author | Shuo Yang [aut, cre], Yi Fei [aut], Jinxin Zhang [ths] |
Maintainer | Shuo Yang <yangsh223@mail2.sysu.edu.cn> |
License | MIT + file LICENSE |
Version | 1.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.