RoBSA: Robust Bayesian Survival Analysis

A framework for estimating ensembles of parametric survival models with different parametric families. The RoBSA framework uses Bayesian model-averaging to combine the competing parametric survival models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual predictors or preference for a parametric family (Bartoš, Aust & Haaf, 2022, <doi:10.1186/s12874-022-01676-9>). The user can define a wide range of informative priors for all parameters of interest. The package provides convenient functions for summary, visualizations, fit diagnostics, and prior distribution calibration.

Package details

AuthorFrantišek Bartoš [aut, cre] (<https://orcid.org/0000-0002-0018-5573>), Julia M. Haaf [ths] (<https://orcid.org/0000-0001-5122-706X>), Matthew Denwood [cph] (Original copyright holder of some modified code where indicated.), Martyn Plummer [cph] (Original copyright holder of some modified code where indicated.)
MaintainerFrantišek Bartoš <f.bartos96@gmail.com>
LicenseGPL-3
Version1.0.3
URL https://fbartos.github.io/RoBSA/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("RoBSA")

Try the RoBSA package in your browser

Any scripts or data that you put into this service are public.

RoBSA documentation built on April 4, 2025, 5:25 a.m.