Estimation and inference methods for large-scale mean and quantile regression models via stochastic (sub-)gradient descent (S-subGD) algorithms. The inference procedure handles cross-sectional data sequentially: (i) updating the parameter estimate with each incoming "new observation", (ii) aggregating it as a Polyak-Ruppert average, and (iii) computing an asymptotically pivotal statistic for inference through random scaling. The methodology used in the 'SGDinference' package is described in detail in the following papers: (i) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2022) <doi:10.1609/aaai.v36i7.20701> "Fast and robust online inference with stochastic gradient descent via random scaling". (ii) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2023) <arXiv:2209.14502> "Fast Inference for Quantile Regression with Tens of Millions of Observations".
Package details |
|
---|---|
Author | Sokbae Lee [aut], Yuan Liao [aut], Myung Hwan Seo [aut], Youngki Shin [aut, cre] |
Maintainer | Youngki Shin <shiny11@mcmaster.ca> |
License | GPL-3 |
Version | 0.1.0 |
URL | https://github.com/SGDinference-Lab/SGDinference/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.