Nothing
A robust and powerful empirical Bayesian approach is developed for replicability analysis of two large-scale experimental studies. The method controls the false discovery rate by using the joint local false discovery rate based on the replicability null as the test statistic. An EM algorithm combined with a shape constraint nonparametric method is used to estimate unknown parameters and functions. [Li, Y. et al., (2024), <doi:10.1371/journal.pgen.1011423>].
Package details |
|
---|---|
Author | Yan Li [aut, cre, cph], Xiang Zhou [aut], Rui Chen [aut], Xianyang Zhang [aut], Hongyuan Cao [aut, ctb] |
Maintainer | Yan Li <yanli_@jlu.edu.cn> |
License | GPL-3 |
Version | 1.0.4 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.