Implements Self-Validated Ensemble Models (SVEM, Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) using Elastic Net regression via 'glmnet' (Friedman et al. <doi:10.18637/jss.v033.i01>). SVEM averages predictions from multiple models fitted to fractionally weighted bootstraps of the data, tuned with anti-correlated validation weights. Also implements the randomized permutation whole model test for SVEM (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>). \\Code for the whole model test was taken from the supplementary material of Karl (2024). Development of this package was assisted by 'GPT o1-preview' for code structure and documentation.
Package details |
|
---|---|
Author | Andrew T. Karl [cre, aut] (ORCID: <https://orcid.org/0000-0002-5933-8706>) |
Maintainer | Andrew T. Karl <akarl@asu.edu> |
License | GPL-2 | GPL-3 |
Version | 2.1.3 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.