| abn-package | 'abn' Package | 
| abn.version | abn Version Information | 
| adg | Dataset related to average daily growth performance and... | 
| AIC.abnFit | Print AIC of objects of class 'abnFit' | 
| bern_bugs | Bugs code for Bernoulli response | 
| BIC.abnFit | Print BIC of objects of class 'abnFit' | 
| build.control | Control the iterations in 'buildScoreCache' | 
| buildScoreCache | Build a cache of goodness of fit metrics for each node in a... | 
| calc.node.inla.glm | Fit a given regression using INLA | 
| calc.node.inla.glmm | Fit a given regression using INLA | 
| categorical_bugs | Bugs code for Categorical response | 
| Cfunctions | Documentation of C Functions | 
| check.valid.buildControls | Simple check on the control parameters | 
| check.valid.dag | Set of simple commonsense validity checks on the directed... | 
| check.valid.data | Set of simple commonsense validity checks on the data.df and... | 
| check.valid.fitControls | Simple check on the control parameters | 
| check.valid.groups | Simple check on the grouping variable | 
| check.valid.parents | Set of simple checks on the given parent limits | 
| check.which.valid.nodes | Set of simple checks on the list given as parent limits | 
| coef.abnFit | Print coefficients of objects of class 'abnFit' | 
| compareDag | Compare two DAGs or EGs | 
| compareEG | Compare two DAGs or EGs | 
| createAbnDag | Make DAG of class "abnDag" | 
| discretization | Discretization of a Possibly Continuous Data Frame of Random... | 
| dot-onAttach | Prints start up message | 
| entropyData | Computes an Empirical Estimation of the Entropy from a Table... | 
| essentialGraph | Construct the essential graph | 
| eval.across.grid | function to get marginal across an equal grid | 
| ex0.dag.data | Synthetic validation data set for use with abn library... | 
| ex1.dag.data | Synthetic validation data set for use with abn library... | 
| ex2.dag.data | Synthetic validation data set for use with abn library... | 
| ex3.dag.data | Validation data set for use with abn library examples | 
| ex4.dag.data | Valdiation data set for use with abn library examples | 
| ex5.dag.data | Valdiation data set for use with abn library examples | 
| ex6.dag.data | Valdiation data set for use with abn library examples | 
| ex7.dag.data | Valdiation data set for use with abn library examples | 
| expit | expit of proportions | 
| expit_cpp | expit function | 
| factorial | Factorial | 
| factorial_fast | Fast Factorial | 
| family.abnFit | Print family of objects of class 'abnFit' | 
| FCV | Dataset related to Feline calicivirus infection among cats in... | 
| find.next.left.x | Find next X evaluation Point | 
| fitAbn | Fit an additive Bayesian network model | 
| fit.control | Control the iterations in 'fitAbn' | 
| forLoopContentFitBayes | Regress each node on its parents.#' | 
| formula_abn | Formula to adjacency matrix | 
| g2b2c_data | Toy Data Set for Examples in README | 
| g2pbcgrp | Toy Data Set for Examples in README | 
| gauss_bugs | Bugs code for Gaussian response | 
| getmarginals | Internal function called by 'fitAbn.bayes'. | 
| getMargsINLA | function to extract marginals from INLA output | 
| getModeVector | function to extract the mode from INLA output | 
| getMSEfromModes | Extract Standard Deviations from all Gaussian Nodes | 
| get.quantiles | function to extract quantiles from INLA output | 
| get.var.types | Create ordered vector with integers denoting the distribution | 
| infoDag | Compute standard information for a DAG. | 
| irls_binomial_cpp | Iterative Reweighed Least Square algorithm for Binomials | 
| irls_binomial_cpp_br | BR Iterative Reweighed Least Square algorithm for Binomials | 
| irls_binomial_cpp_fast | Fast Iterative Reweighed Least Square algorithm for Binomials | 
| irls_binomial_cpp_fast_br | Fast Br Iterative Reweighed Least Square algorithm for... | 
| irls_gaussian_cpp | Iterative Reweighed Least Square algorithm for Gaussians | 
| irls_gaussian_cpp_fast | Fast Iterative Reweighed Least Square algorithm for Gaussians | 
| irls_poisson_cpp | Iterative Reweighed Least Square algorithm for Poissons | 
| irls_poisson_cpp_fast | Fast Iterative Reweighed Least Square algorithm for Poissons | 
| linkStrength | Returns the strengths of the edge connections in a Bayesian... | 
| logit | Logit of proportions | 
| logit_cpp | logit functions | 
| logLik.abnFit | Print logLik of objects of class 'abnFit' | 
| makebugs | Make BUGS model from fitted DAG | 
| makebugsGroup | Make BUGS model from fitted DAG with grouping | 
| mb | Compute the Markov blanket | 
| mi_cpp | Mutual Information | 
| miData | Empirical Estimation of the Entropy from a Table of Counts | 
| modes2coefs | Convert modes to fitAbn.mle$coefs structure | 
| mostProbable | Find most probable DAG structure | 
| nobs.abnFit | Print number of observations of objects of class 'abnFit' | 
| odds | Probability to odds | 
| or | Odds Ratio from a matrix | 
| pigs.vienna | Dataset related to diseases present in 'finishing pigs',... | 
| plotAbn | Plot an ABN graphic | 
| plot.abnDag | Plots DAG from an object of class 'abnDag' | 
| plot.abnFit | Plot objects of class 'abnFit' | 
| plot.abnHeuristic | Plot objects of class 'abnHeuristic' | 
| plot.abnHillClimber | Plot objects of class 'abnHillClimber' | 
| plot.abnMostprobable | Plot objects of class 'abnMostprobable' | 
| pois_bugs | Bugs code for Poisson response | 
| print.abnCache | Print objects of class 'abnCache' | 
| print.abnDag | Print objects of class 'abnDag' | 
| print.abnFit | Print objects of class 'abnFit' | 
| print.abnHeuristic | Print objects of class 'abnHeuristic' | 
| print.abnHillClimber | Print objects of class 'abnHillClimber' | 
| print.abnMostprobable | Print objects of class 'abnMostprobable' | 
| rank_cpp | Rank of a matrix | 
| scoreContribution | Compute the score's contribution in a network of each... | 
| searchHeuristic | A family of heuristic algorithms that aims at finding high... | 
| searchHillClimber | Find high scoring directed acyclic graphs using heuristic... | 
| simulateAbn | Simulate data from a fitted additive Bayesian network. | 
| simulateDag | Simulate a DAG with with arbitrary arcs density | 
| skewness | Computes skewness of a distribution | 
| std.area.under.grid | Standard Area Under the Marginal | 
| strsplits | Recursive string splitting | 
| summary.abnDag | Prints summary statistics from an object of class 'abnDag' | 
| summary.abnFit | Print summary of objects of class 'abnFit' | 
| summary.abnMostprobable | Print summary of objects of class 'abnMostprobable' | 
| tidy.cache | tidy up cache | 
| toGraphviz | Convert a DAG into graphviz format | 
| validate_dists | Check for valid distribution | 
| var33 | simulated dataset from a DAG comprising of 33 variables | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.