Provides methods for fitting the Mixture of Factor Analyzers (MFA) model automatically. The MFA model is a mixture model where each sub-population is assumed to follow the Factor Analysis model. The Factor Analysis (FA) model is a latent variable model which assumes that observations are normally distributed, but imposes constraints on their covariance matrix. The MFA model contains two hyperparameters; g (the number of components in the mixture) and q (the number of factors in each component Factor Analysis model). Usually, the Expectation-Maximisation algorithm would be used to fit the MFA model, but this requires g and q to be known. This package treats g and q as unknowns and provides several methods which infer these values with as little input from the user as possible.
Package details |
|
---|---|
Author | John Davey [aut, cre], Sharon Lee [ctb], Garique Glonek [ctb], Suren Rathnayake [ctb], Geoff McLachlan [ctb], Albert Ali Salah [ctb], Heysem Kaya [ctb] |
Maintainer | John Davey <john.c.m.davey@gmail.com> |
License | GPL (>= 3) |
Version | 1.0.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.