| apply_ln_transformation | Applies the natural logarithm to the data set | 
| assess_joint_sktest | Tests the skewness and kurtosis of a VAR model | 
| assess_kurtosis | Tests the kurtosis of a VAR model | 
| assess_portmanteau | Tests the white noise assumption for a VAR model using a... | 
| assess_portmanteau_squared | Tests the homeskedasticity assumption for a VAR model using a... | 
| assess_skewness | Tests the skewness of a VAR model | 
| autovar | Return the best VAR models found for a time series data set | 
| autovarCore-package | Automated Vector Autoregression Models and Networks | 
| coefficients_of_kurtosis | Kurtosis coefficients. | 
| coefficients_of_skewness | Skewness coefficients. | 
| compete | Returns the winning model | 
| day_dummies | Calculate weekday dummy variables | 
| daypart_dummies | Calculate day-part dummy variables | 
| explode_dummies | Explode dummies columns into separate dummy variables | 
| impute_datamatrix | Imputes the missing values in the input data | 
| invalid_mask | Calculate a bit mask to identify invalid outlier dummies | 
| model_is_stable | Eigenvalue stability condition checking | 
| model_score | Return the model fit for the given varest model | 
| needs_trend | Determines if a trend is required for the specified VAR model | 
| outliers_column | Determine the outliers column for the given column data | 
| portmanteau_test_statistics | An implementation of the portmanteau test. | 
| print_correlation_matrix | Print the correlation matrix of the residuals of a model... | 
| residual_outliers | Calculate dummy variables to mask residual outliers | 
| run_tests | Execute a series of model validity assumptions | 
| run_var | Calculate the VAR model and apply restrictions | 
| selected_columns | Convert an outlier_mask to a vector of column indices | 
| select_valid_masks | Select and return valid dummy outlier masks | 
| significance_from_pearson_coef | Calculate the significance of a Pearson correlation... | 
| sktest_joint_p | SK test p-level | 
| trend_columns | Construct linear and quadratic trend columns | 
| validate_params | Validates the params given to the autovar function | 
| validate_raw_dataframe | Validates the dataframe given to the autovar function | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.