Man pages for banditsCI
Bandit-Based Experiments and Policy Evaluation

aw_estimateEstimate policy value via non-contextual adaptive weighting.
aw_scoresCompute AIPW/doubly robust scores.
aw_varVariance of policy value estimator via non-contextual...
calculate_balwtsCalculate balancing weight scores.
calculate_continuous_X_statisticsEstimate/variance of policy evaluation via contextual...
dot-check_ACheck Number of Observations for Inference
dot-check_first_batchCheck First Batch Validity
dot-check_shapeCheck Shape Compatibility of Probability Objects
draw_thompsonThompson Sampling draws.
estimateEstimate/variance of policy evaluation via non-contextual...
generate_bandit_dataGenerate classification data.
ifelse_clipClip lamb values between a minimum x and maximum y.
impose_floorImpose probability floor.
LinTSModelLinear Thompson Sampling model.
output_estimatesPolicy evaluation with adaptively generated data.
plot_cumulative_assignmentPlot cumulative assignment for bandit experiment.
ridge_initRidge Regression Initialization for Arm Expected Rewards
ridge_muhat_lfo_paiLeave-future-out ridge-based estimates for arm expected...
ridge_updateUpdates ridge regression matrices.
run_experimentRun an experiment using Thompson Sampling.
simple_tree_dataGenerate simple tree data.
stick_breakingStick breaking function.
twopoint_stable_var_ratioCalculate allocation ratio for a two-point stable-variance...
update_thompsonUpdate linear Thompson Sampling model.
banditsCI documentation built on April 12, 2025, 1:42 a.m.