bartXViz: Visualization of BART and BARP using SHAP

Complex machine learning models are often difficult to interpret. Shapley values serve as a powerful tool to understand and explain why a model makes a particular prediction. This package computes variable contributions using permutation-based Shapley values for Bayesian Additive Regression Trees (BART) and its extension with Post-Stratification (BARP). The permutation-based SHAP method proposed by Strumbel and Kononenko (2014) <doi:10.1007/s10115-013-0679-x> is grounded in data obtained via MCMC sampling. Similar to the BART model introduced by Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>, this package leverages Bayesian posterior samples generated during model estimation, allowing variable contributions to be computed without requiring additional sampling. The BART model is designed to work with the following R packages: 'BART' <doi:10.18637/jss.v097.i01>, 'bartMachine' <doi:10.18637/jss.v070.i04>, and 'dbarts' <https://CRAN.R-project.org/package=dbarts>. For XGBoost and baseline adjustments, the approach by Lundberg et al. (2020) <doi:10.1038/s42256-019-0138-9> is also considered. The BARP model proposed by Bisbee (2019) <doi:10.1017/S0003055419000480> was implemented with reference to <https://github.com/jbisbee1/BARP> and is designed to work with modified functions based on that implementation. BARP extends post-stratification by computing variable contributions within each stratum defined by stratifying variables. The resulting Shapley values are visualized through both global and local explanation methods.

Getting started

Package details

AuthorDong-eun Lee [aut, cre], Eun-Kyung Lee [aut]
MaintainerDong-eun Lee <ldongeun.leel@gmail.com>
LicenseGPL (>= 2)
Version1.0.8
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("bartXViz")

Try the bartXViz package in your browser

Any scripts or data that you put into this service are public.

bartXViz documentation built on Aug. 8, 2025, 6:23 p.m.