Nothing
Fits Cox model via stochastic gradient descent. This implementation avoids computational instability of the standard Cox Model when dealing large datasets. Furthermore, it scales up with large datasets that do not fit the memory. It also handles large sparse datasets using proximal stochastic gradient descent algorithm. For more details about the method, please see Aliasghar Tarkhan and Noah Simon (2020) <arXiv:2003.00116v2>.
Package details |
|
---|---|
Author | Aliasghar Tarkhan [aut, cre], Noah Simon [aut] |
Maintainer | Aliasghar Tarkhan <atarkhan@uw.edu> |
License | GPL (>= 2) |
Version | 0.0.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.