Man pages for binaryRL
Reinforcement Learning Tools for Two-Alternative Forced Choice Tasks

binaryRL-packagebinaryRL: Reinforcement Learning Tools for Two-Alternative...
fit_pStep 3: Optimizing parameters to fit real data
func_epsilonFunction: Epsilon Related
func_etaFunction: Learning Rate
func_gammaFunction: Utility Function
func_loglFunction: Loss Function
func_piFunction: Upper-Confidence-Bound
func_tauFunction: Soft-Max Function
Mason_2024_G1Group 1 from Mason et al. (2024)
Mason_2024_G2Group 2 from Mason et al. (2024)
optimize_paraProcess: Optimizing Parameters
rcv_dStep 2: Generating fake data for parameter and model recovery
recovery_dataProcess: Recovering Fake Data
rpl_eStep 4: Replaying the experiment with optimal parameters
RSTDModel: RSTD
run_mStep 1: Building reinforcement learning model
simulate_listProcess: Simulating Fake Data
summary.binaryRLS3method summary
TDModel: TD
UtilityModel: Utility
binaryRL documentation built on Aug. 21, 2025, 6:01 p.m.