binaryRL-package | binaryRL: Reinforcement Learning Tools for Two-Alternative... |
fit_p | Step 3: Optimizing parameters to fit real data |
func_epsilon | Function: Epsilon Related |
func_eta | Function: Learning Rate |
func_gamma | Function: Utility Function |
func_logl | Function: Loss Function |
func_pi | Function: Upper-Confidence-Bound |
func_tau | Function: Soft-Max Function |
Mason_2024_G1 | Group 1 from Mason et al. (2024) |
Mason_2024_G2 | Group 2 from Mason et al. (2024) |
optimize_para | Process: Optimizing Parameters |
rcv_d | Step 2: Generating fake data for parameter and model recovery |
recovery_data | Process: Recovering Fake Data |
rpl_e | Step 4: Replaying the experiment with optimal parameters |
RSTD | Model: RSTD |
run_m | Step 1: Building reinforcement learning model |
simulate_list | Process: Simulating Fake Data |
summary.binaryRL | S3method summary |
TD | Model: TD |
Utility | Model: Utility |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.