The Genetic Algorithm (GA) is used to perform changepoint analysis in time series data. The package also includes an extended island version of GA, as described in Lu, Lund, and Lee (2010, <doi:10.1214/09-AOAS289>). By mimicking the principles of natural selection and evolution, GA provides a powerful stochastic search technique for solving combinatorial optimization problems. In 'changepointGA', each chromosome represents a changepoint configuration, including the number and locations of changepoints, hyperparameters, and model parameters. The package employs genetic operators—selection, crossover, and mutation—to iteratively improve solutions based on the given fitness (objective) function. Key features of 'changepointGA' include encoding changepoint configurations in an integer format, enabling dynamic and simultaneous estimation of model hyperparameters, changepoint configurations, and associated parameters. The detailed algorithmic implementation can be found in the package vignettes and in the paper of Li (2024, <doi:10.48550/arXiv.2410.15571>).
Package details |
|
---|---|
Author | Mo Li [aut, cre] |
Maintainer | Mo Li <mo.li@louisiana.edu> |
License | MIT + file LICENSE |
Version | 0.1.0 |
URL | https://github.com/mli171/changepointGA |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.