Provides several cluster-robust variance estimators (i.e., sandwich estimators) for ordinary and weighted least squares linear regression models, including the bias-reduced linearization estimator introduced by Bell and McCaffrey (2002) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2002002/article/9058-eng.pdf> and developed further by Pustejovsky and Tipton (2017) <DOI:10.1080/07350015.2016.1247004>. The package includes functions for estimating the variance- covariance matrix and for testing single- and multiple- contrast hypotheses based on Wald test statistics. Tests of single regression coefficients use Satterthwaite or saddle-point corrections. Tests of multiple- contrast hypotheses use an approximation to Hotelling's T-squared distribution. Methods are provided for a variety of fitted models, including lm() and mlm objects, glm(), geeglm() (from package 'geepack'), ivreg() (from package 'AER'), ivreg() (from package 'ivreg' when estimated by ordinary least squares), plm() (from package 'plm'), gls() and lme() (from 'nlme'), lmer() (from `lme4`), robu() (from 'robumeta'), and rma.uni() and rma.mv() (from 'metafor').
Package details |
|
---|---|
Author | James Pustejovsky [aut, cre] (<https://orcid.org/0000-0003-0591-9465>) |
Maintainer | James Pustejovsky <jepusto@gmail.com> |
License | GPL-3 |
Version | 0.5.10 |
URL | http://jepusto.github.io/clubSandwich/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.