Performs the Cram method, a general and efficient approach to simultaneous learning and evaluation using a generic machine learning algorithm. In a single pass of batched data, the proposed method repeatedly trains a machine learning algorithm and tests its empirical performance. Because it utilizes the entire sample for both learning and evaluation, cramming is significantly more data-efficient than sample-splitting. Unlike cross-validation, Cram evaluates the final learned model directly, providing sharper inference aligned with real-world deployment. The method naturally applies to both policy learning and contextual bandits, where decisions are based on individual features to maximize outcomes. The package includes cram_policy() for learning and evaluating individualized binary treatment rules, cram_ml() to train and assess the population-level performance of machine learning models, and cram_bandit() for on-policy evaluation of contextual bandit algorithms. For all three functions, the package provides estimates of the average outcome that would result if the model were deployed, along with standard errors and confidence intervals for these estimates. Details of the method are described in Jia, Imai, and Li (2024) <https://www.hbs.edu/ris/Publication%20Files/2403.07031v1_a83462e0-145b-4675-99d5-9754aa65d786.pdf> and Jia et al. (2025) <doi:10.48550/arXiv.2403.07031>.
Package details |
|
---|---|
Author | Yanis Vandecasteele [cre, aut], Michael Lingzhi Li [ctb], Kosuke Imai [ctb], Zeyang Jia [ctb], Longlin Wang [ctb] |
Maintainer | Yanis Vandecasteele <yanisvdc.ensae@gmail.com> |
License | GPL-3 |
Version | 0.1.1 |
URL | https://github.com/yanisvdc/cramR https://yanisvdc.github.io/cramR/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.