cvms: Cross-Validation for Model Selection

Cross-validate one or multiple regression and classification models and get relevant evaluation metrics in a tidy format. Validate the best model on a test set and compare it to a baseline evaluation. Alternatively, evaluate predictions from an external model. Currently supports regression and classification (binary and multiclass). Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R., & Wambugu M. (2019, ISBN: 9781838550134).

Package details

AuthorLudvig Renbo Olsen [aut, cre] (<https://orcid.org/0009-0006-6798-7454>, @ludvigolsen), Hugh Benjamin Zachariae [aut], Indrajeet Patil [ctb] (<https://orcid.org/0000-0003-1995-6531>, @patilindrajeets), Daniel Lüdecke [ctb] (<https://orcid.org/0000-0002-8895-3206>)
MaintainerLudvig Renbo Olsen <r-pkgs@ludvigolsen.dk>
LicenseMIT + file LICENSE
Version1.6.2
URL https://github.com/ludvigolsen/cvms
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("cvms")

Try the cvms package in your browser

Any scripts or data that you put into this service are public.

cvms documentation built on Sept. 11, 2024, 6:22 p.m.