dcorVS: Variable Selection Algorithms Using the Distance Correlation

The 'FBED' and 'mmpc' variable selection algorithms have been implemented using the distance correlation. The references include: Tsamardinos I., Aliferis C. F. and Statnikov A. (2003). "Time and sample efficient discovery of Markovblankets and direct causal relations". In Proceedings of the ninth ACM SIGKDD international Conference. <doi:10.1145/956750.956838>. Borboudakis G. and Tsamardinos I. (2019). "Forward-backward selection with early dropping". Journal of Machine Learning Research, 20(8): 1--39. <doi:10.48550/arXiv.1705.10770>. Huo X. and Szekely G.J. (2016). "Fast computing for distance covariance". Technometrics, 58(4): 435--447. <doi:10.1080/00401706.2015.1054435>.

Package details

AuthorMichail Tsagris [aut, cre]
MaintainerMichail Tsagris <mtsagris@uoc.gr>
LicenseGPL (>= 2)
Version1.1
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("dcorVS")

Try the dcorVS package in your browser

Any scripts or data that you put into this service are public.

dcorVS documentation built on April 4, 2025, 2:18 a.m.